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SSEECCTTIIOONN--II  

1.1 Complex Number: A complex number is a number that can be expressed in the form x + iy, 
where x and y are real numbers. If we write z = x + iy, where x and y are real variable’s then z is 
called a complex variable.  
  It is clear that the set of complex numbers includes the real numbers as a subset. When real 
number x is displayed as point (x, 0) on the real axis and Complex number of the form (0, y) correspond 
to point on the y axis and is called purely imaginary number, when y ≠ 0. The y axis is then referred to as 
the imaginary axis. It is customary to denote a complex number (x, y) by z (see Fig. 1). 

 
 
 
 
 
 

y 

z = (x, y) 

i = (0, 1) 

O x = (x, 0) x 
 

Figure 1 
  To each complex number there corresponds one and only one point in the xy-plane and 
conversely, to each point in the xy-plane there exists one and only one complex number. xy-plane is 
also called complex plane, Argand plane and Gaussian plane. 
The real numbers x and y are, moreover, known as the real and imaginary parts of z, respectively; and 
we write 
  x =Re z, y = Im z.                                            (1) 
The sum z1 + z2 and product z1z2 of two complex numbers 
  z1 = (x1, y1) and z2 = (x2, y2)                               (2) 
are defined as follows: 
  (x1, y1) + (x2, y2) = (x1 + x2, y1 + y2),                            (3) 
  (x1, y1)(x2, y2) = (x1x2 − y1y2, y1x2 + x1y2).                             (4) 
Note that the operations defined by equations (3) and (4) become the usual operations of addition and 
multiplication when restricted to the real numbers and 
  (x1, 0) + (x2, 0) = (x1 + x2, 0), 
  (x1, 0)(x2, 0) = (x1x2, 0). 
The complex number system is, therefore, a natural extension of the real number system. 

1.1.1 Basic algebraic properties of complex variable: Various properties of addition and 
multiplication of complex numbers are the same as for real numbers. We list here the more basic of 
these algebraic properties and verify some of them.  
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The commutative laws 
  z1+ z2= z2+ z1, z1z2= z2z1          

and the associative laws 
  (z1+ z2) + z3= z1+ (z2+ z3), (z1z2)z3= z1(z2z3) ,     
follow easily from the definitions of addition and multiplication of complex numbers and the fact that 
real numbers obey these laws.  
For example, if 
  z1= (x1, y1) and z2= (x2, y2), then 
   z1+ z2= (x1+ x2, y1+ y2) = (x2+ x1, y2+ y1) = z2+ z1. 
Verification of the rest of the above laws, as well as the distributive law 
  z(z1+ z2) = zz1+ zz2, is similar. 
According to the commutative law for multiplication, iy = yi, one can write z = x + yi instead of  
z = x + iy. Also, because of the associative laws, a sum z1+ z2+ z3 or a product z1z2z3 is well defined 
without parentheses, as is the case with real numbers. 
The additive identity 0 = (0, 0) and the multiplicative identity 1 = (1, 0) for real numbers carry over to 
the entire complex number system. That is, 
 z + 0 = z and z · 1 = z  (5) 
for every complex number z. Furthermore, 0 and 1 are the only complex numbers with such properties. 
There is associated with each complex number z = (x, y) an additive inverse 

     , ,z x y      (6) 

satisfying the equation z + (−z) = 0 . Moreover, there is only one additive inverse for any given z. Since 
the equation 
   (x, y) + (u, v) = (0 , 0 ) 
implies that 

      .u x and v y     

For any nonzero complex number z = (x, y), there is a number z−1 such that zz−1 = 1. This multiplicative 
inverse is less obvious than the additive one. To find it, we seek real numbers u and v, expressed in 
terms of x and y, such that 
    (x, y) (u, v) = (1, 0). 
According to equation (4), which defines the product of two complex numbers, u and v must satisfy the 
pair 
  xu − yv = 1, yu + xv = 0  
of linear simultaneous equations and simple computation yields the unique solution 

  2 2 2 2,x yu v
x y x y


 

 
 

So, the multiplicative inverse of z = (x, y) is 
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   1
2 2 2 2, 0 .x yz z

x y x y
  
    

                                  (7) 

The inverse z−1 is not defined when z = 0. In fact, z = 0 means that x2 + y2 = 0  and this is not permitted 
in expression (7). Such properties continue to be anticipated because they also apply to real numbers. 
We begin with the observation that the existence of multiplicative inverse enables us to show that if a 
product  z1z2 is zero, then so is, at least one of the factors z1 and z2. For suppose that z1z2 = 0 and z1 ≠ 0. 
The inverse 1

1z  exists and any complex number times zero is zero. Hence,  

       1 1 1 1
2 2 2 1 1 1 1 2 1 1 2 1.1 .0 0.z z z z z z z z z z z z          

That is, if z1z2 = 0, either z1 = 0 or z2 = 0; or possibly both of the numbers z1 and z2 are zero. Another 
way to state this result is that if two complex numbers z1 and z2 are nonzero, then so is their product z1z2.  
In terms of additive and multiplicative inverses, Subtraction and division are defined as  

  1 2 1 2    ,            z z z z      (8) 

  11
1 2 2

2

0 .z z z z
z

    (9) 

Thus, in view of expressions (8) and (9)  

      1 2 1 1 2 2 1 2 1 2  ,    ,    ,   z z x y x y x x y y         (10) 

and 

    1 2 2 1 2 1 2 1 2 1 2
1 1 22 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2

, , , , 0z x y x x y y y x x yx y z
z x y x y x y x y

     
             

 (11) 

where z1 = (x1, y1) and z2 = (x2, y2). 
Using z1 = x1+ iy1 and z2= x2+ iy2, one can write expressions (10) and (11) here as 
 1 2 1 2 1 2( ) ( )z z x x i y y      (12) 

and 

  1 1 2 1 2 1 2 1 2
22 2 2 2

2 2 2 2 2

0z x x y y y x x yi z
z x y x y

 
  

   
(13) 

or 

   
  

1 1 2 21

2 2 2 2 2

.
x iy x iyz

z x iy x iy
 


 

  (14) 

1.1.2 Example: Show that 
(i) 1 2 1 2| | | | | |z z z z    

(ii) 1 2 1 2|| | | || | |z z z z    

Solution: To prove these, we first observe that if z1 + z2 = 0 , then there is nothing to prove. If  
z1 + z2 ≠ 0 , then |z1 + z2| ≠ 0 . Since Re z ≤ |z|, we have 
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  1 2 1 2

1 2 1 2 1 2 1 2

R e R e 1z z z z
z z z z z z z z

   
            

 

From which (i) follows.  
To prove the second inequality, we write z1 = z2 + (z1 – z2) so that, by (i), 
  1 2 1 2| | | | | |,z z z z    
i.e.         1 2 1 2| | | | | | .z z z z    

Similarly, we obtain 
  2 1 1 2 1 2| | | | | | | | .z z z z z z      

On combining these two inequalities, we get (ii). 
1.1.3 Vector and moduli: It is natural to associate any nonzero complex number z = x + iy with the 
directed line segment, or vector, from the origin to the point (x, y) that represents z in the complex 
plane. In fact, we often refer to z as the point z or the vector z. In Fig. 2 the numbers    z = x+ iy and 
−2 + i  are displayed graphically as both points and radius vectors. 

 
 
 
 

 
 
 
   
 

y 
(–2, 1) 

1 z = (x, y) 

–2 O x 

 
Figure 2 

When z1 = x1 + iy1 and z2 = x2 + iy2, the sum 
  z1 + z2 = (x1 + x2) + i(y1 + y2) 
corresponds to  the  point  (x1 + x2, y1 + y2).  It also corresponds to a vector with those coordinates as its 
components. Hence z1 + z2 may be obtained vectorially as shown in Fig.3. 

 
 
 
 

y 

z2 
z2 

z1 
O x  

Figure 3 
  Although the product of two complex numbers z1 and z2 is itself a complex number represented 
by a vector, that vector lies in the same plane as the vectors for z1 and z2. Evidently, this product is 
neither the scalar nor the vector product used in ordinary vector analysis. 
The vector interpretation of complex numbers is especially helpful in extending the concept of absolute 
values of real numbers to the complex plane. The modulus, or absolute value, of a complex number      z 
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= x + iy is defined as the nonnegative real number 2 2x y  and is denoted by | z |, that is, 
2 2| |z x y  . 

Geometrically, the number | z | is the distance between the point (x, y) and the origin, or the length of 
the radius vector representing z. It reduces to the usual absolute value in the real number system when y 
= 0. Note that while the inequality z1 < z2 is meaningless unless both z1 and z2 are real, the statement  
| z1 | < | z2 | means that the point z1 is closer to the origin than the point z2. Since |− 3 + 2i| = 13  and  
|1 + 4i| = 17 , we know that the point −3 + 2i is closer to the origin than 1+ 4i. 

The distance between two points (x1, y1) and (x2, y2) is |z1 − z2|. This is clear from Fig. 4, since |z1 − z2| 
is the length of the vector representing the number z1 − z2 = z1 + (−z2) and by translating the radius 
vector z1 − z2, one can interpret z1 − z2 as the directed line segment from the point (x2, y2) to the point 
(x1, y1).  
Alternatively, it follows from the expression 
  z1 − z2 = (x1 − x2) + i(y1 − y2) 
and from definition  

     2 2
1 2 1 2 1 2| | .z z x x y y      

 
Figure 4 

1.1.4 Complex Conjugates: The complex conjugate, or simply the conjugate, of a complex number 
z = x + iy is defined as the complex number x − iy and is denoted by z , that is, z x iy  . The 
number z  is represented by the point (x, −y), which is the reflection in the real axis of the point    (x, 
y) representing z (Fig. 5). Also z = z and | | | |z z for all z. 

 
Figure 5 

If z1 = x1 + iy1 and z2 = x2 + iy2, then 
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         1 2 1 2 1 2 1 1 2 2z z x x i y y x iy x iy         . 

So, the conjugate of the sum of the conjugates is 

  1 2 1 2z z z z   . 

In the same manner, it is easy to show that 

  1 2 1 2z z z z    

  1 2 1 2z z z z   

and 

   1 1
2

2 2

0z z z
z z

 
  

 
.  

An important identity relating the conjugate of a complex number z = x + iy to its modulus is 2| |zz z , 
where each side is equal to x2 + y2.  
1.1.5 Exponential form: Let r and θ be polar coordinates of the point (x, y) that corresponds to a 
nonzero complex number z = x + iy. Since x = r cos θ and y = r sin θ, the number z can be written in 
polar form as z = r(cos θ + i sin θ). If z = 0, the coordinate θ is undefined; and so it is understood 
that z ≠ 0, whenever polar coordinates are used. 
  In complex analysis, the real number ‘r’ is not allowed to be negative and is the length of the 
radius vector for z, that is, r= 2 2| |z x y  . The real number θ represents the angle, measured in 
radians, that z makes with the positive real axis when z is interpreted as a radius vector (Fig. 6). As in 
calculus, θ has an infinite number of possible values, including negative ones, that differ by integral 
multiples of 2π. Those values can be determined from the equation tan θ = y/x, where the quadrant 
containing the point corresponding to z must be specified. Each value of θ is called an argument of z and 
the set of all such values is denoted by arg z. The principal value of arg z, denoted by Arg z, is that 
unique value Θ such that −π  <Θ ≤ π. Evidently, then, 
        arg z = Argz+2nπ (n=0 ,±1,±2,...).                 (*) 
Also, when z is a negative real number, Arg z has value π, not −π. 

 
 
 
 
 
 
 

y 

z = x + iy 

r 

x 

 
Figure 6 

1.1.6 Example: The complex number −1−i, which lies in the third quadrant, has principal argument 
−3π/4. That is, 

  3)1(
4

Arg i 
    
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It must be emphasized that because of the restriction −π <Θ ≤ π of the principal argument Θ, it is 
not true that 

  1 5( )
4

Arg i 
   . 

According to equation (*),  

   3( ) 2 0, 1, 2,...
4

1a nr ng i          

Note that the term Arg z on the right hand side of equation (2) can be replaced by any particular value of 
arg z and that one can write, for instance, 

  arg    51 2 0, 1, 2,...
4

i n n            

The symbol ie  , or exp(iθ) is defined by means of Euler’s formula as cos sinie i    , where θ is 
to be measured in radians. It enables one to write the polar form more compactly in exponential 
form as z = r ie  . 
1.1.7 Mapping:  Let S and T be two non-empty sets in complex plane. If corresponding to every point z 
of the set S there can be assigned a unique point of w of the set T by means of a rule ‘f’, then we say that 
‘f’ is a mapping from S to T and we write it as  f : S  T. 

1.1.8 Functions of Complex Variable: Let S and T be two non-empty sets in complex plane. If 
corresponding to each value of a complex variable z = x +iy  of the set S, there correspond one or more 
values of another complex variable w = u + iv of the set T, then w is called a function of complex 
variable z and is denoted by 

  w = f(z) = f(x + iy) = u + iv. 

If z and w be separated into their real and imaginary parts then the relation w = f (z) becomes 
 u + iv = f (x + iy). From here, it is clear that u and v, in general, depend upon x and y in a certain 
definite manner so that the function w = f(z) is nothing but the ordered pair of two real functions u and v 
of two real variables x and y so that we may write w = u  (x, y) + iv (x, y). 

  Functions of (x, y) that depend only on the combination (x + iy) are called functions of a 
complex variable, with rectangular coordinates x and y.  e.g.  w = z2 
  u + iv = (x + iy)2 = x2 – y2 + 2ixy 
      =(x2 – y2) +i(2xy). 
Compare real and imaginary parts, we have 
  u = x2 – y2 and v = 2xy. 
Thus, u and v are the functions of the real variables x and y. Therefore, w = f(z) = u(x, y) + iv(x, y). 

1.1.9 Single valued Function:  If to each value of z there corresponds one and only one values of w, 
then w is called a single valued function of z. e.g.  w = 1/z ( z  0) is a single valued function. 



8 Section–I 

1.1.10 Multivalued Function: If to each value of z there corresponds more than one value of w, then w 
is called a multivalued function of z. e.g. w2 = z is multivalued function of z, because w assumes two 
values for each value of z except at z = 0.  

1.1.11 Bounded Function: A function f(z) is said to be bounded in domain D if there exist  k > 0 such 
that |f(z)|  k, for all z in D. If f(z) is continuous in a bounded closed region D, then it is bounded in 
domain D. 

1.1.12 Limit of a Complex Function: Let D be the domain of the function in complex plane where 
functions f(z) is defined. Let z0 be any point in D, the function f(z) is said to converge or tend to the limit  
l as z tend to z0 in any manner in D, if for any  > 0 however small there exist  > 0  depending upon  
and z0 such that 

  ( )f z l   , whenever 0z z   . 

Where z is other than z0 and we can also write 

  
0

lim ( )
z z

f z l


  or ( )f z l as 0z z  . 

1.1.13 Continuity of a Complex Function: A complex function w = f(z) defined in the bounded closed 
domain D, is said to be continuous at a point z = z0  of D, if given any positive number , we can find a 
positive number  such that 

   |f(z) – f(z0 )| < , whenever |z – z0 | < . 

We can also write 
0

0lim ( ) ( )
z z

f z f z


  

This means that for continuity at a point, the limiting value and the functional value at the point have the 
same value. A function f(z) is continuous in a domain D if it is continuous at every point of D. If a 
function is not continuous at z0, then we say that function is discontinuous at z0 or z0 is the point of 
discontinuity. 

1.1.14 Remark: If f(z) is continuous at z0 , then it can be easily shown that  

  
0

0lim ( ) ( )
z z

f z f z


  

    
0 0 0 0

0 0(x,y) (x , ) (x,y) (x , )
lim u , , lim , ,

y y
x y u v x y v

 
   

where f(z0 ) = u0  + iv0 . This adds the information that the component functions u(x, y) and v (x, y) are 
also continuous at z0 = (x0,  y0 ). 

1.1.15 Remark: If the function f(z) is continuous, so are |f(z)|,  f z and  f z . Suppose that f and g are 

continuous functions at the point z0 , then the following functions are also continuous at z0 . 

        (i)  f(z) + g(z)   (ii)   f(z) – g(z) 

       (iii)  f(z).g(z)                (iv)  f(z)/g(z), provided g(z0 )0 . 

1.1.16 Example: Show that the following functions are continuous everywhere in complex plane 
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(i)  f(z) = |z|  (ii)     f(z) = z . 

Solution. (i) Here f(z) = |z| 

Consider  |f(z) – f(z0 )| = ||z|-|z0 || 

              |z – z0 | <, whenever |z – z0 | < =   [ ||a|- |b||  |a – b|] 

Therefore, f(z) is continuous at z = z0 . 

(ii) Here f(z) = z  

        Consider  |f(z) – f(z0 )| = | z – 0z |= |z – z0 |          [ | z | = |z|] 

                  <  , whenever |z – z0 | < = .        [By taking  =  ] 
Therefore, f(z) is continuous at z = z0 . 

1.1.17 Uniform Continuity: A function f(z) is said to be uniformly continuous in domain if for any  
 > 0, however small there exist a   > 0 depending upon  and independent of z0  belonging to D such 
that 

  0( ) ( )f z f z    whenever 0z z   , where z is different from z0. 

1.1.18 Differentiability of a Complex Function: Let  f(z)  be a  single  valued   complex functions 

defined in a domain D of the complex plane. We say that f(z) is differentiable at a point z0  D if the 

increment ratio 0

0

( ) ( )f z f z
z z



 tends to a finite limit as z tends to z0  in any manner, provided that z 

always remains a point of D. This finite limit, if exists, is termed as the differential coefficient or the 
derivative of f(z) at z = z0  and is denoted by 'f (z0 ).Thus,  

       
0

0 0
0lim '

z z

f z h f z
f z

h

 
   

In other words, let f(z) be a function defined in some domain D containing the neighbourhood of a point 

z0 . Then f(z) is said to be differentiable at z = z0  if the increment ratio 0 0( ) ( )f z z f z
z

  


 tends to a 

unique limit (finite) as  z  0  along any path of the domain D, and this unique limit is called the 
derivative of f(z) at z = z0  and is denoted by 'f (z0 ).Thus, 

       0 0
0 0

' lim
z

f z z f z
f z

z 

  


       
 

Moreover, we drop the suffix from z0 and usually write 

       
0

' lim
z

f z z f z
f z

z 

  



 

For w = f(z), let w +  w = f(z + z).Then, 

   
0

' lim
z

dw wf z
dz z 


 


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0

( ) ( )lim
z

f z z f z
z 

  



. 

If we get different values of this limit as  z  0 from different points of D, we say that the derivative 
of f(z) at any z  D does not exist and the function f(z) is said to be non-differentiable at  z  D. 
  We can also put our definition of differentiability more precisely as follows: 
  The function f(z), defined and one valued in a domain D of the complex plane, is said to be 
differentiable at a point z0  D if there exists a definite number l (say) with the property that given any 
positive number , we can find a positive number  (depending on ) such that  

  
   0

0

f z f z
l

z z



 


 

for every z  D in the neighbourhood of z0 defined by |z – z0 | <. When this is the case, we call l the 
derivative or differential coefficient of f(z) at z0  and denote it by  'f (z0 ). 

  If f is differentiable at each point of D, we say that f is differentiable on D. We observe that if f 
is differentiable on D, then 'f (z) defines a function 'f : D→ . If f` is continuous, then we say that f is 
continuously differentiable. If 'f  is differentiable, then f is said to be twice differentiable. Continuing in 
this manner, a differentiable function such that each successive derivative is again differentiable, is 
called infinitely differentiable. It is immediate that the derivative of a constant function is zero. 
1.1.19 Theorem: Every differentiable function is continuous. 
Proof: If f is differentiable at a point z0 in D, then 

  
   

0

0
0

0

'( ) lim
z z

f z f z
f z

z z





 exists finitely. 

Consider 

  
         

 
0 0 0

0
0 0

0

0

lim lim lim

' .0 0

z z z z z z

f z f z
f z f z z z

z z

f z

  

 
        

 

 

 i.e.
0

0lim ( ) ( )
z z

f z f z


 . Hence, f (z) is continuous at z0. 

1.1.20 Remark: Converse of the above theorem is not necessarily true. 

1.1.21 Example: Consider the function 2( )f z z . This function is continuous in all finite region of z-
plane but nowhere differentiable except at origin. 

Solution: Here 2 2 2( )f z z x y     

    2 2,u x y x y   and ( , ) 0.v x y   Clearly, f(z) is continuous everywhere because of the 
continuity of u(x, y) and v(x, y). Consider, 
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     
0

0 0

0
0 0

0
2 2

20 0 0

0 0

'( ) lim , 0,0

.lim lim .

z z

z z z z

f z f z
f z z

z z

z z z z z z
z z z

z z z z



 


 



       


   

In numerator, adding and subtracting 0.z z   

  
0

0 0 0 0
0

0

. . .'( ) lim
z z

z z z z z z z zf z
z z

  



  

        
0

0 0 0

0

( ) ( )lim
z z

z z z z z z
z z

  



  

             
0

0 0

0

( )lim .
z z

z z zz
z z


 


  (1) 

If we put 0 (cos sin )z z r i     then 0 0 (cos sin )z z z z r i      . 

So that 20

0

(cos sin ) cos 2 sin 2
(cos sin )

i
i

i

z z r i e e i
z z r i e






   
 


 

    
 

 . 

Thus, equation (1) becomes 

   
0

0 0' lim (cos2 sin 2 )
z z

f z z z i 


     , where 0arg( )z z    .                                  (2) 

This last expression in (2) does not tend to unique limit as 0z z  in any manner. Since this limit 
depends upon . Therefore function is not differentiable at non-zero values of z. At z0 = (0, 0) the 
expression on the R.H.S. of (2) becomes z  which of course tend to zero with z and thus function is 
differentiable at zero (origin). 

1.1.22 Example: Consider the function f(z) = z . This function is obviously continuous but does not 
possess derivative. 
Solution: Since, by definition 

           
0 0

' lim lim
h h

z h z hf z
h h 

 
   

If we write h = ir e  , then 

  2

0
'( ) lim i

h
f z e 


  

So, if h → 0 along the positive real axis (θ = 0), then 'f (z) = 1 and if h → 0 along the positive 
imaginary axis  / 2  , then '( ) 1f z   . Hence 'f (z) is not unique and it depends on how h 
approaches zero. Thus, we find the surprising result that the function f(z)  = z  is  not differentiable 
anywhere, even though it is continuous everywhere.  
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1.1.23 Example: Find  'f z  , where f(z) = z3 + 2z2 + i. 

Solution. Consider    3 2 3 2[ 2 i] [z 2 z i]( ) ( ) z z z zf z z f z
z z

          


 
 

               = 3z2 + 4z +3z z + 2 z + ( z)2 

Taking limit  z  0, we get 

   'f z  = 3z2 + 4z 

By - method, for given  >0, we must find  > 0 such that 

  
     '

f z z f z
f z

z


 
 


 whenever | |z    . 

Consider  

  
         22 2' 3 4 3 2 3 4

f z z f z
f z z z z z z z z z

z
 

          


 

                                | 3 2 || |z z z      

Restricting | z| < 1, we observe that 

  |3z + 2 +  z|  3 |z| + 2 + | z| 
       < 3(1 + |z|). 

If we choose min 1,
3(1 | |)z


 

   
, then f(z) is derivable at z  D. 

1.2 Analytic Function: Let D be an open set in .  A function f : D →   is analytic (holomorphic) in D 
if f(z) is differentiable at each point of D. Here, it is important to stress that the open set D is a part of the 
definition. 
   Equivalently, a function f(z) is said to be analytic at z = z0  if f(z) is differentiable at every point 
of some neighbourhood of z0 i.e. f(z) is said to be analytic at z = z0 if there exist a neighbourhood 
|zz0|< at every point of which 'f (z) exists. We observe that f(z)= |z   z0|2 is differentiable at z = z0 
but it is not analytic at z = z0 because there does not exist a neighbourhood of ‘z0’ in which |z  z0|2 is  
differentiable at each point of the neighbourhood. 
   If in a domain D of the complex plane, f(z) is analytic throughout, we sometimes say that f(z) is 
regular in D to emphasize that every point of D is a point at which f(z) is analytic. Further, if f(z) is 
analytic at each point of the entire finite plane, then f(z) is called an entire function(regular function). 
A point where the function fails to be analytic, is called a singular point or singularity of the function. 
   The set (class) of functions holomorphic in D is denoted by H(D). The usual differentiation 
rules apply for analytic functions. Thus, if f, g ∈  H(D), then f + g ∈  H(D) and fg ∈  H(D), so that H(D) 
is a ring. Further, superpositions of analytic functions are analytic, chain rule of differentiation applies. 
Thus, if f and g are analytic on D and D1 respectively and f(D) ⊂ D1, then gof is analytic on D 
and        ( ) '  ' 'gof z g f z f z  for all z in D. 
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1.2.1 Example: Show that  f z z  is not analytic anywhere. 

Solution: Here,  f z z .  

By definition,      
0

' lim
z

f z z f z
f z

z




 
   

     
0

0, 0

lim

lim

z

x y

z z z
z
x iy x i y x iy

x i y



 




 
 



 

 


    




  

     
0, 0

lim
x y

x iy x i y x iy
x i y 

 
  

    



  

     
0, 0

lim
x y

x i y
x i y 

 
  





  

If 0y   then  
0

' lim 1
x

xf z
x




  . 

If 0x   then  
0

' lim 1
y

i yf z
i y




 
   

 
. 

Thus,  'f z  does not exist i.e. f (z) is not differentiable. Hence, f (z) is not analytic at anywhere.  

1.2.2 Exercise: Examine the nature of the function f(z) in a region including origin. 

   
 2 5

4 10

,

, 0

0 0

x y x iy
z

f z x y
z

 
 

 

  

Solution: Here  
3 5 2 6 3 5 2 6

4 10 4 10 4 10
x y ix y x y x yf z i

x y x y x y


  
  

  

    
3 5

4 10
x yu

x y
 


 and 

2 6

4 10
x yv

x y



 

By definition, 

       

 
 

0 0

2 5 2 5

4 10 4 100 0

0
' 0 lim lim

1lim . lim

z z

x x

f z f f z
f

z z
x y x iy x y

x iyx y x y

 

 


 


 

 

 

Let 0z   along the path y = x, then 
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     
2 5 7 3

4 10 64 60 0 0
' 0 lim lim lim 0

11x x x

x y x xf
x y xx x  

   
 

  

Again, let 0z  along the path 5 2y x  then 

   
4

4 40 0

1 1' 0 lim lim
2 2x x

xf
x x 

  


 

Thus,  ' 0f is not unique, so  ' 0f does not exist. Hence, f(z) is not analytic at z = 0. Consequently, f(z) 
is not analytic in a region including origin. 
1.2.3 Remark: The theory of analytic functions cannot be considered as a simple generalization of 
calculus. To point out how vastly different the two subjects are, we shall show that every analytic 
function is infinitely differentiable and also has a power series expansion about each point of its domain. 
These results have no analogue in the theory of functions of real variables. Further, in the complex 
variable case, there are an infinity of directions in which a variable z can approach a point z0 , at which 
differentiability is considered. In the real case, however, there are only two avenues of approach (e.g. 
continuity of a function in real case, can be discussed in terms of left and right continuity). 
Thus, we notice that the statement that a function of a complex variable has a derivative is stronger than 
the same statement about a function of a real variable. 
1.2.4 Cauchy-Riemann Equations: Now we come to the earlier mentioned compatibility relationship 
between the real and imaginary parts of a complex function which are necessarily satisfied if the 
function is differentiable. These relations are known as Cauchy-Riemann equations (CR equations). We 
have seen that every complex function can be expressed as f(z)=u(x, y)+iv(x, y), where u(x, y) ≡ u and 
v(x, y) ≡ v are real functions of two real variables x and y. We shall denote the partial derivatives 

2 2 2

2 2, , , ,u u u u u
x y x y x y
    
     

by ux, uy, uxx, uyy, uxy respectively. 

1.2.5 Theorem: (Necessary condition for f(z) to be analytic). If a function f(z) = u(x, y) + iv(x, y) is 
differentiable at any point 0 0 0z x iy   in a domain D, then the four partial derivatives ux, uy, vx, vy exist 
and satisfy the equations ux = vy and uy = -vx. 
Proof: Since f(z) = u(x, y) +iv(x, y)  is differentiable at any point z0 in D, 

       
0

0
0

0

' lim
z z

f z f z
f z

z z





, 

exists finitely and uniquely as 0z z  in any manner. 

Suppose 0z z in such a manner that 0z z is purely real i.e. along x-axis. So, let z0 = x0 +iy0 and         
z = x + iy0 such that z – z0 = x + iy0 – x0 – iy0 = x – x0= real 

Also if 0z z then 0x x . 

Now      
0

0
0

0

' lim
z z

f z f z
f z

z z





                (1) 
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   
0

0 0 0

0

lim
z z

f x iy f x iy
x x

  



          

  
       

0

0 0 0 0 0 0

0

, , , ,
lim
x x

u x y iv x y u x y iv x y
x x

        


 

         
0 0

0 0 0 0 0 0

0 0

, , , ,
lim lim
x x x x

u x y u x y v x y v x y
i

x x x x 

 
 

 
           (2) 

If we assume that the function is differentiable then this expression must tend to a unique limit 
as 0x x . Thus, real and imaginary parts of the expression must tend to unique limits. This is equivalent 

to the statement that partial differential coefficient u
x



 and v
x



 exists at the point (x0, y0) or z0. Hence, 

we get 

   0' u vf z i
x x
 

 
 

                 (3) 

Similarly, let us take the mode of tending of z  to z0  such that z – z0 is purely imaginary (i.e. along y- 
axis). By taking  z0 = x0 +iy0 and z = x0 + iy. Therefore, z – z0 = i(y – y0) = purely imaginary. 

Also if 0z z then 0y y . Now, 

     
0

0
0

0

' lim
z z

f z f z
f z

z z





 

       
 0

0 0 0 0 0 0

0

, , , ,
lim
y y

u x y iv x y u x y iv x y
i y y

        


   

       
   

 
   

 0

0 0 0 0 0 0

0 0

, , [ , , ]
lim
y y

u x y u x y i v x y v x y
i y y i y y

  
    

 

   
 

   
 0 0

0 0 0 0 0 0

0 0

, , , ,
lim lim
y y y y

v x y v x y u x y u x y
i

y y y y 

    
        

       (4) 

Proceeding as above we conclude that partial derivatives v
y



and u
y



exists at z0 or (x0, y0) and thus we 

get  

   0' v uf z i
y y
 

 
 

                     (5) 

Since f(z) is given to be analytic therefore  0'f z  is unique derivative of f(z)  at z = z0. So, comparing 
(3) and (5) and equating real and imaginary parts, we get 

u v
x y
 


 

and v u
x y
 

 
 

                (6) 

i.e.  x yu v and   x yv u   or   y xu v  . 

The equations given by (6) are known as C-R equations. 
1.2.6 Remark: We have f(z) = u + iv which gives 
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,f u v f u vi i

x x x y y y
     

   
       

From these two results, C-R equations, in complex form, can be put as  

   

1f f
x i y
 


 

 

(ii) We note that unless the differential equations (3) i.e. C-R equations are satisfied, f(z) = u + iv cannot 
be differentiable at any point even if the four first order partial derivatives exist. 
For example, let us take 

   f(z) = Re z = x, z = x + iy. 

Then 1, 0, 0, 0u u v v
x y x y
   

   
   

 

Thus, although the partial derivatives exist everywhere, C-R equations are not satisfied at any point of 
the complex plane. 
Hence, the function f(z) = Re z is not differentiable at any point. 
1.2.7 Remark: The conditions of the theorem (1.2.5) are not sufficient. Actually, C-R equations are 
useful for proving non-differentiability. They are not, on their own, a sufficient condition for 
differentiability. 
1.2.8 Example: We consider the function 

   
   2

/ , 0 ,
0 , 0

z z zf z z x iy
z

   
 

 

and show that f(z) is not differentiable at the origin, although C-R equations are satisfied at that point.  
Solution: By definition, we have 

   

       

   

2

20 0

2

, 0,0

0
' 0 lim lim

lim

z z

x y

zf z f
f

z z
x iy
x iy

 




 

 
   

 

   

1 0
1 0

1 0

if z along real axis
if z along imaginary axis

if z along the line y x


 
  

 

Thus,  ' 0f is not unique and hence f(z) is not differentiable at the origin. 

Now, to verify C-R equations, we have f(0)= 0  implies u(0 ,0)= 0 , v(0 ,0)= 0 . 
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Also   
     

2 3
3

2 2

z z x iy
f z

z x yzz


  


 

From here, 
3 2 3 2

2 2 2 2
3 3( , ) , ( , )x xy y x yu x y v x y

x y x y
 

 
 

 

Therefore, at (0 ,0) 

    1,  0, 0,  1x y x yu u v v     Thus, C-R equations are satisfied at the origin. 

1.2.9 Example: Show that the function   | |,f z xy z x iy    is not analytic at the origin, Although, 
C-R equations are satisfied at that point. 

Solution: Here,        | | , ,f z xy u x y iv x y     

So that  , | |u x y xy  and  , 0v x y   

Now, at z = (0, 0) 

     
0 0

,0 0,0 0lim lim 0
0x x

u x uu
x x x 


  

 
. 

Similarly,    
0 0

0, 0,0 0lim lim 0
0y y

u y uu
y y y 


  

 
. 

And  0v v
x y
 

 
 

. 

i.e.   x yu v and   y xu v  . 

Hence, all the four partial derivatives exist and satisfy C-R equations. 

   
0 0 0

| | | |( ) (0)' 0 lim lim lim
z z x

xy xyf z ff
z x iy x iy  


  

 
 

Let 0z  , along the path y = mx. Then 

     0
' 0 lim

1 1z

x m mf
x im im

 
 

 . 

Since value of this limit depends upon m i.e.  ' 0f  is not unique. It means that  ' 0f doesn’t exist and 
so f(z) is not analytic at z = 0. 
   To make C-R equations as sufficient an additional condition of continuity on partial derivatives 
is imposed. 
1.2.10 Theorem (Sufficient condition for f(z) to be analytic): Suppose that f(z)= u(x, y)+iv(x, y) for   z 
= x + iy is analytic in a region D, if the four partial derivatives ux, uy, vx, vy exists, continuous and satisfy 
Cauchy-Riemann equations at each point of D. 

Proof. Consider the point z = (x, y) in a region D. Let  ,x x y y    be the point in the neighbourhood 
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of point (x, y). Let      , , ,w f z u x y iv x y z x iy     . 

Now,   ,u u x y                                 (1) 

and  ,u u u x x y y       .                                    (2)  

      , ,u u x x y y u x y        

Similarly,    , ,v v x x y y v x y       

Since , ,x y xu u v  and yv  are continuous in a region G and we have by the mean value theorem for 
functions of two variables. 

    u uu x y
x y

   
            

,                                              (3) 

where and   are small and tends to zero as x  and y  tends to zero. 

Similarly, applying mean value theorem for v(x, y), we get 

    ' 'v vv x y
x y

   
            

                                         (4) 

where '  and '  are small and tends to zero as x  and y  tends to zero. Now, using C-R equations 
i.e. x yu v  and  y xu v   , we have 

   
   

' '

' '

u u v vu i v x y i x i y
x y x y

u v u vi x i y i x i y
x x y y

       

     

                                
                     

  

        ' 'u vi x i y i x i y
x x

                 
                              (5) 

Now, by definition 

   
     

0

0

' lim

lim

z

z

f z z f z
f z

z
u i v
x i y








 
 





 







  

        
0

' '
' lim

z

i x i yu vf z i
x x x i y

   
 

           
                         (6) 

Now  
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       

   

' ' | | | ' | | | | | | ' | | |
| |

| | | ' | | | | | | ' | | |
| | | |

i x i y x y
x i y x i y

x y
x i y x i y

       
   

   
   

        


 

   
 

 

 

 | | | ' | | | | ' |       , using ,x x i y y x i y         .           (7) 

But the expression on R.H.S. of (7) tends to zero as x  and y  tend to zero. Finally from (6), we get  

    ' u vf z i
x x

 
 

   . 

Which is finite and definite at every point of D. Hence, f(z)  is analytic at every point of D. 
1.2.11 Theorem: Let u and v be real-valued functions defined on a region D and suppose that u and v 
have continuous first order partial derivatives. Then f : D →   defined by f(z) = u(x, y) + iv(x, y) is 
analytic iff u and v satisfy the Cauchy-Riemann equations. 

1.2.12 C-R Equations in Polar Form: If f(z) = u + iv be an analytic function and iz re  , where u, v, 
r, θ are real, then the C-R equations are 

  1 .u v u vand r
r r r 
   

  
   

  

Proof: In polar co-ordinates (r, θ), x = r cos θ, y = r sin θ. Therefore, 

   r = 2 2x y   , θ = 1tan y
x

   

Now,    

  
u u r u
x r x x




    
 

      

        
2 22 2

u x u y
r x yx y 

              
  

        
1cos sinu u

r r
 


 

 
 

                            (1) 

   

u u r u
y r y y




    
 

      

   
2 22 2

u y u x
r x yx y 

              
   

         
1sin cosu u

r r
 


 

 
 

                       (2) 

Similarly, 1cos sinv v v
x r r

 


  
 

      
                         (3) 
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and    1sin cosv v v
y r r

 


  
 

  
                            (4) 

Using CR equations u v
x y
 


 

with (1) and (4), u v
y x
 

 
 

with (2) and (3), we get 

   

1 1cos sin 0u v v u
r r r r

 
 

                  
                         (5) 

   

1 1sin cos 0u v v u
r r r r

 
 

                  
                          (6) 

Multiplying (5) by cos θ and (6) by sin θ and then adding, we find 

   
1 0u v

r r 
 

 
   

i.e   1u v
r r 
 


 

                      (7) 

Again, multiplying (5) by sin θ and (6) by cos θ and then subtracting, we have 

   
1v u

r r 
 


 

= 0  

i.e   1v u
r r 
 

 
 

               (8) 

Equations (7) and (8) are the required C-R equations in polar co-ordinates. 

1.2.13 Remark:  We can express  'f z   in polar co-ordinates as 

   ' u vf z i
x x
 

 
 

  

   

 

1 1cos sin cos sin

cos sin

cos sin

i

u u v vi i
r r r r
u v u vi i i
r r r r

u vi i
r r

u ve i
r r



   
 

 

 



   
   
   
                  

       
        

i.e  idw we
dz r

 



 

similarly, we get 1 idw we
dz r




 

 


. 
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1.2.14 Definition:  A function w = f(z) = u + iv ceases to be analytic whenever 0dz
dw

  i.e. dw
dz

  . 

1.2.15 Exercise: For what value of z, the function w defined by  cos sinvz e u i u   ceases to be 
analytic. 

Solution: Here  cos sinvz e u i u   

                          z ( )v iu iu v i u iv iwe e e e e        

log

iwz e
z iw

 
 

  

Differentiating, we have 

  1 1idw dw
z dz dz iz
   . 

From here, w is not analytic only when 0dz
dw

  i.e. iz = 0 or z = 0. So function ceases to be analytic at 

the origin. 
1.2.16 Theorem: A real function of a complex variables either has derivative zero or the derivative does 
not exist. 
Proof. Suppose that f(z) is a real function of complex variable  whose derivative exists  at z0 . Then, by 
definitions 

        0 0

00' lim
h

f z f
h

z
h z

f


 
  

Let h = h1 + ih2. If we take the limit h → 0 along the real axis, h = h1 → 0 , then  0'f z  is real (since f 

is real). If we take the limit h → 0 along the imaginary axis, h = ih2 → 0 , then  0'f z becomes purely 

imaginary number, where f is real. So we must have  0'f z  = 0. Further, in this case we also observe 
that if f(z) is analytic then, using C-R  equations,  we conclude that f(z) is a constant function. 
1.2.17 Example:  Show that the function f(0) = 0 , 

   

     3 3

2 2

3 3 3 3

2 2 2 2

1 1x i y i
x y

x y x yi
x y x

v

y

f z u i
  











 




 

is continuous and that the C-R equations are satisfied at the origin, yet  ' 0f  does not exist. 

Solution. We have 

   

3 3 3 3

2 2 2 2,x y x yu v
x y x y
 

 
   
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When z ≠ 0, u and v are rational functions of x and y with non-zero denominators. It follows that they are 
continuous when z ≠ 0. To test the continuity at z = 0, we change to polars and get   

      3 3 3 3,  u r cos sin v r cos sin         

each of which tends to zero as r → 0, whatever value θ may have. Now, the actual values of u and v at 
origin are zero since f(0) = 0.  So the actual and the limiting values of u and v at the origin   are equal so 
they are continuous. Hence, f(z) is continuous function for all values of z. Now, at the origin 

   

   
0

3 2

0

,0 0,0
lim

/lim 1

x

x

u xu
x x

x x
x










 

 

Similarly, 1, 1, 1u v v
y x y
  

   
  

. 

Hence, C-R equations are satisfied at the origin. 

Again,      
0

0
' lim

z

f z f
f z

z


   

   3 3 3 3

2 20

1lim .
z

x y i x y
x y x iy

  


 
 

If we let z → 0 along real axis (y = 0), then   ' 0  1  f i  .   

If z→0 along y = x, then  ' 0
1

if
i




 

Thus  ' 0f  is not unique and hence f(z) is not differentiable at the origin. Similar conclusion (as for 
example 1.2.17) holds for the following two functions 

 

 
 2

2

5

4

I
, 0( ) | |

0 , 0

, 0
( ) ( ) | |

0 , 0

m z
zi f z u iv z
z

z z
ii f z u iv z

z


    
 


   
   

1.2.18 Milne Thomson Method: By this method we can construct an analytic function, when we know 
its either real or imaginary part. Since, we have 

   
,

2 2
z z z zx y

i
 

   where z = x + iy. 

Therefore,    ( ) , ,f z u x y iv x y   
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        , ,
2 2 2 2

z z z z z z z zu iv
i

      
    

   
                                         (1) 

Equation (1) can be regarded as a formal identity in two independent variables z  and z . Now, by 
setting x = z and y = 0 so that z z  . We have 

        ,0 ,0f z u z iv z  . 

Now, if f(z)  is analytic, then we have 

   
 '

y x

u vf z i
x x

u ui u v
x y

 
 
 
        


  

Hence, if we write 

   
   , , ,u ux y x y

x y
  

 
   

Then, 

         ' , ,f z x y i x y     

          ,0 ,0z i z   . 

Integrating w.r.t. z, we get 

   f(z)=    ,0 ,0z i z dz c     , c being a constant. 

Thus, we can construct f(z) if u(x,y) is known. 
Similarly, if v(x, y) is given, then we have 

      1 1 1( ) ,0 ,0f z z i z dz c      , 

where  1 ,x y and  1 ,x y  denote v
y



 and v
x



respectively and 1c is some arbitrary constant. 

1.2.19 Example: Construct the analytic function of which real part is    , cos sinxu x y e x y y y   

Solution Here real part u(x, y) is known. By Milne-Thomson’s method, we have 

   f(z)=    ,0 ,0z i z dz c                                (1) 

where,        ,0 ,0 ,0 ,0u uz z and z z
x y

  
 
 

 

Now,      cos sin cosxu e x y y y y
x


  

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 sin sin cosxu e x y y y y

y


   
  

   ( ,0) 1 ,0 0zz e z and z      
From (1), we obtain 

        1 0zf z z e i dz c           [Integrating by parts] 

            1 .z zz e dz c ze c          

1.2.20 Example:  Construct an analytic function f(z) for u(x, y) = 4xy   x3 + 3xy2.  
Solution:  Since u(x, y) is given. By Milne-Thomson’s Method, we have 

   f(z) =    ,0 ,0z i z dz c                                 (1) 

where        ,0 ,0 ,0 ,0u uz z and z z
x y

  
 
 

 

Now,  2 24 3 3u y x y
x


  


 

   
4 6u x xy

y


 
  

    2( ,0) 3 ,0 4z z and z z      
From (1), we obtain 

     2 3 23 4 2f z z i z dz c z iz c         . 

1.2.21 Exercise: 

(i) Find the analytic function f(z) = u + iv if 2 2( , ) log .u x y x y   

(ii) Find analytic function whose imaginary part is v = ex(x sin y + y cos y). 
(iii)Show that the function u (x, y)= excos y is harmonic. Determine its harmonic conjugate    v(x, y) 

and the analytic function f(z) = u + iv. 
(iv) Show that u (x, y) = e-x(x sin y - y cos y) is harmonic and find v(x, y) such that f(z) = u +iv is 

analytic. 

1.2.22 Example: Show that the function 
4

( ) zf z e
 (z  0) and f(0) = 0  is not analytic at z = 0 , 

although C-R equations are satisfied at origin. 

Solution: Here  44 4

11

( ) x iyz zf z e e e


     

                             
 

   

 

   
4

4
4

42 24 4
8

x iyx iy x iy
x yx iy x iy re e e

 
                 



Complex Analysis 25 

                             
4 4 2 2 3 3

8
1 6 4 4x y x y ix y ixy
re
         

     
 2 24 4 2 2

88
11 .46

.
ixy x yx y x y

rre e
               

     
 2 2

4 4 2 2 8
8

4
1 6

.

ixy x y

x y x y r
re e

 
 

            

                               
   4 4 2 2

8

2 2 2 21 6

8 8

4 4
cos sin

x y x y
r

ixy x y ixy x y
e i

r r

    
  
  
  

  

Hence, at origin we have 

  

    4

4
10 0 0

0 0

3 74 8

,0 0,0 1lim lim lim
0

1 1lim lim 01 11 1 ...1 ...
22

x

x x x
x

x x

u x uu e
x x x

xe

xx
x xx x



  

 


  

 

   
   
    

               

 

Similarly, 0, 0u v
y y
 

 
 

 and 0v
x





 

Hence, C-R equations are satisfied. 
To show that f(z) is not analytic at origin, we have 

    4

0 0
lim lim z

z z
f z e



 
   

Let 0z   along the path 4
i

z re


  so that 0r  as  0z   

  
  4

4 4

0 0

1/

0 0

lim lim

lim lim

ir e

z r

r r

r r

f z e

e e e

 





 



 



    
 

It shows that  
0

lim
z

f z


does not exist means f(z) is not continuous at z = 0. Therefore, f(z) is not 

differentiable at z = 0. Hence,  f(z) is not analytic at z = 0. 
1.2.23 Theorem: Real and imaginary parts of an analytic function satisfy Laplace equation. 

Solution. Let f(z) = u + iv be an analytic function so that C-R equations  x yu v , y xu v   are satisfied. 
Differentiating first C-R equation w.r.t. x and second w.r.t. y and adding, we get 

   

2 2 2 2

2 2
u u v v

x y x y y x
   

  
     

 

Where continuity of partial derivatives implies that the mixed derivatives are equal i.e. xy yxv v  . Hence, 
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we get 2. 0.0 .xx yyu u i ue      

Similarly, differentiating first equation w.r.t y and second w.r.t x and then subtracting, we find 

   

2 2 2 2

2 2
u u v v

y x x y x y
   

  
     

 

i.e.  2. 0.0 .xx yyv v i e v    

1.2.24 Remark: C-R equations, in polar from, are  

   
1 1,r ru v v u
r r   

 
Differentiating first equation w.r.t r and second w.r.t θ, we get 

   
1,r r rr rv u ru v u
r       

Thus, using the continuity of second order partial derivatives, we get  

   

1
r rru ru u

r   
 

i.e.  2
1 1 0r ru u u
r r     

which is the polar form of Laplace equation. 
1.2.25 Definition: A real valued function u(x, y) of real variables x and y is said to be harmonic  on a 
domain D    , if for all points  (x, y) in D, all second partial derivatives exist, continuous  and satisfies  
Laplace equation. Thus, from the above theorem 1.2.23, we observe that u and v are harmonic functions. 
In such a case, u and v are called conjugate harmonic functions i.e. u is referred to as the harmonic 
conjugate of v and vice-versa where f(z)= u + iv is analytic. Harmonic functions play a part in both 
physics and mathematics. 
1.2.26 Definition: Two families of curves u(x, y) = c1 and v(x, y) = c2 are said to form an orthogonal 
system if they intersect at right angle to each other at each of their points of intersection. 
1.2.27 Exercise: If f(z) = u + iv is an analytic function in domain D then  curves u(x, y) = c1 and          
v(x, y) = c2 form two orthogonal families. 
Solution: Since f(z) = u + iv is analytic, so C-R equations are satisfied. Let m1 = slope of tangent to the 
curve u(x, y)  and m2  = slope of tangent to the curve v(x, y) . To prove that u(x, y) = c1 and v(x, y) = c2  
form two orthogonal families. It is sufficient to show that m1 m2 = -1.  
Differentiate u(x, y) = c1 and v(x, y) = c2, we have 

  0u udx dy
x y
 

 
 

   (1)  and 0v vdx dy
x y
 

 
 

 (2)         

From (1), 1
/

/
x

y

udy u
dx y

m x
u u

 
  

 
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From (2), 2
yx

y x

uvdym
dx v u


   [using CR equation]            

Hence, m1 m2 = -1. 

1.2.28 Exercise: Prove that    , sin cosxu x y e x y y y   is harmonic and find the conjugate harmonic 

function  ,v x y  such that  f z u iv   is analytic. 

Solution: Here    , sin cosxu x y e x y y y     

 
2

2 2sin sin cosxu e y x y y y
x


   


 (1) 

Similarly,  
2

2 2sin sin cosxu e y x y y y
y


  


 (2) 

From (1) and (2) 

  
2 2

2 2 0u u
x y
 

 
 

 . 

Thus, u(x,y) is harmonic. 

Now, again    , sin cosxu x y e x y y y   

  
   

   

, sin sin cos

, sin cos cos

x

x

ux y e y x y y y
x
ux y e y y x y y
y










   



   


  

Now, by Milne Thomson Method, 

  
     

   
' , 0 ,0

0 z z z z

f z z i z

i ze e i ze e

 
   

 

     
  

     z z zf z i ze e dz i ze c         

Now, if we write   ( , ) ( , )f z u x y iv x y  , then we get ( , ) ( , ) zu x y iv x y i ze c    

  
   
   

sin cos ,

, sin cos

x z

z x

e x y y y iv x y ize c

iv x y ize e x y y y c

 

 

    

    
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       
 

     
 

, sin cos

sin cos

cos sin cos sin sin cos

cos sin cos sin sin cos

x iy x

x iy iy

x

x

iv x y i x iy e e x y y y c

ie xe iye i x y y y c

ie x y i y iy y i y i x y y y c

ie x y ix y iy y y y ix y iy y c

  

  





    

      
        
      

  

       
   

   

, cos sin

, cos sin

x

x

iv x y ie x y y y c
cv x y e x y y y
i





  

   
  

Since v(x, y) is a real function of real variables x and y therefore c must be of the form 'c i  where 'c  is 
some real constant. 

1.2.29 Example: Find the analytic function f (z) = u + iv where  

2 2
2sin sin 2

2cos 2 cosh 2 cos 2y y

x xu v
e e x y x  

  
 . 

Solution: Given f (z) = u + iv                 (1) 

  2 2
2sin

2cos 2y y

xu v
e e x 

 
               (2) 

   if z iu v    [By (1)]                (3) 

Adding (1) and (3), we have 

         1 i f z u v i u v      

Let u v U   and u v V  then 

       1 i f z F z U iV     ,where z u iv   

Since f (z) is analytic so F(z) is also analytic. Now, from Milne Thomson Method, we have 

   ' x x y xF z U iV V iV     [By C-R equation] 

         1 2, ,x y i x y      

        1 2,0 ,0F z z i z dz c      . 

In the present case  1 2
2sin 2 sinh 2,

(cosh 2 cos 2 )
V x yx y
y y x

  
 
 

 

   
 

2

2 2

2cos 2 cosh 2 cos 2 2sin 2
,

cosh 2 cos 2
x y x xVx y

x y x


 
 
 

  

Hence,      1F z i f z   
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   1 2

2

,0 ,0

2
1 cos 2

sin

z i z dz c

dzi c
z

dzi c
z

     

  


  







  

                 2cos coti ec zdz c i z c       

 

 

cot ', '
1 1

1 1cot ' cot '.
2 2

i cf z z c c
i i

i i iz c z c

   
 
 

   
  

1.2.30 Example: Show that an analytic function with constant modulus is constant. 
Solution: Let f(z) = u + iv and |f(z)| = constant = c(say) 
We have  

2 2

2 2 2

u iv c

u v c

 

  
  

Differentiating partially w.r.t. x, we have 

  0u vu v
x x
 

 
 

                   (1) 

Similarly 0u vu v
y y
 

 
 

                   (2) 

Using C-R equation  y xv u  and   x yv u   in (2) and (1) respectively. We get 

  0u uu v
x y
 

 
 

                  (3) 

and        0u uu v
y x
 

 
 

                  (4) 

Multiply (3) by u and (4) by v and add 

   2 2 0,uu v
x


 


  

But 2 2 0.u v  Therefore, 0u
x





. Similarly 0, 0u v
y x
 

 
 

 and 0v
y





. 

Thus, all the four first order partial derivatives of u and v are zero. Therefore, function u and v are 
constant and hence f(z) is constant. 



30 Section–I 

1.3. Power series.  An infinite series of the from 

   
   0

0 0
( ) nn

n n
n n

i a z or ii a z z
 

 

 
 

where an, z, z0 are in general complex, is called a power series. Since the series (ii) can be transformed 
into the series (i) by means of change of origin, it is sufficient to consider only the series of type (i). 
1.3.1 Some Tests for convergence of series: 

(i) If series 
0

n
n

u



  is convergent, then lim 0nn

u


 . 

(ii) Ratio Test: The series 
0

n
n

u



 is convergent or divergent according as 1lim 1n

n
n

u
u



  or 1  . 

(iii)Cauchy Root Test: If 1/lim n
nn

u l


 , then the series 
0

n
n

u



 is convergent or divergent according as 

l < 1 or l > 1 and test fails if l = 1. 

(iv) P-Test: The series 
0

1
p

n n




 is convergent if p > 1 and divergent if p  1. 

(v) Comparison Test: 
0

n
n

u



 is absolutely convergent if |un|  |vn| and 

0
n

n
v




 is convergent. 

1.3.2 Theorem: The power series 
0

n
n

n
a z




  

(i) Converges for every z, 
(ii) Converges only for  z = 0, 
(iii)Converges for z in some region, in the complex plane. 

Proof: We give an example of each case 

(i) The series 
0

n

n

z
n




  converges absolutely for all values of z. We have 

n

n
zu
n

 and
1

1 1

n

n
zu
n



 


. 

1
1

1 1 1lim lim . lim lim 1
n

n
nn n n n

n

u z n n n
u n z z z   



  
        

So, by D-Ratio test the series is absolutely convergent for all values of z. 

(ii) The series 
0

n

n
n z




  converges only for z = 0 

0
lim

0 0
n

n

if z
n z

if z

 
  

 

Hence, series is not convergent for 0z  . 
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(iii) The geometric series 
0

n

n
z




  converges for |z| < 1 and diverges for| | 1z  . 

1.3.3 Theorem:  Power series converges for a particular value z0 of z, then it converges absolutely for 
every z for which |z| < |z0|. 

Proof:  Since 
0

n
n

n
a z




  converges for a particular value z0. Therefore, 0

0

n
n

n
a z




 converges then its nth term  

0
n

na z  must tends to zero as n . So we can find a number M > 0 such that 

  0| |n
na z M , for all n. Therefore, 

0

| |
n

n
n

za z M
z

 . 

Since |z| < |z0|. Therefore, series 
0 0

n

n

z
z




 converges for all values of z for which |z| < |z0|. In 

otherwords, 
0

n
n

n
a z




 converges absolutely for all z, for which |z| < |z0|.  

1.3.4 Circle of Convergence: The circle |z| = R which includes all the values of z for which the power 

series 
0

n
n

n
a z




  converges is called the circle of convergence of the series and the radius R of this circle 

is called radius of convergence of the series. 

1.3.5 Theorem (Cauchy-Hadmard Theorem): The series
0

n
n

n
a z




 , there exist a number R, radius of 

convergence of power series, converges for |z| < R and divergence for |z| > R. 

Proof: The series 
0

n
n

n
a z




 is absolutely convergent if the series 

0

n
n

n
a z




 is convergent. But the series 

0

n
n

n
a z




 is a series of positive terms. Hence, all the tests for convergence of positive terms can be 

applied to this series. Thus, if we apply Cauchy Root Test we see that power series is absolutely 

convergent if 1/lim 1n
nn

a z


 . If we put 1/ 1lim n
nn

a
R

 . Note that the series is absolutely convergent if 

| | 1z
R
  i.e. |z| < R and the series is divergent if | | 1z

R
 i.e. |z| > R. Hence proved. 

1.3.6 Remark: The radius of convergence of the power series using ratio test or Cauchy’s root test, is 
given by the formula  

  1/lim | | n
nn

R a 


  = 

1

lim n

n
n

a
a



 

or  1/1 lim | | n
nn

a
R 
  = 1lim n

n
n

a
a



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The number R is unique and R= is allowed, in that case the series converges for arbitrarily large z . 
Also this is known as Hadmard’s formula for the radius of convergence and hence the above theorem 

can also be stated as “The power series 
0

n
n

n
a z




 converges within and diverges outside the circle of 

radius 1/lim n
nn

R a 


 which has its centre at the origin.” 

1.3.7 Theorem: Let 
0

n
n

n
a z




 be a power series and let 1

1

n
n

n
na z





 be the power series obtained by 

differentiating the first series term by term then the desired series, has the same radius of convergence as 
the original series. 
Proof: Let R and 'R  be the radius of convergence of the above given two series respectively. Then, 

  

1/

1/ 1/1/

1 lim

1 lim lim
'

n
nn

n nn
n nn n

a
R

na n a
R



 



 
 

If 1/lim 1n

n
n


 , the result will be over. 

To prove this, let 1/ 1n
nn h   so that 

    21
1 1 ...

2
n n

n n n n

n n
n h nh h h


       . 

  
  21

2 n

n n
n h


   

  2 2
1nh

n
 


. 

 We obtain 0nh  as n  and therefore, 1/lim 1n

n
n


 . Hence R = 'R . 

1.3.8 Remark: Our interest in power series is in their behavior as functions. The power series can be 

used to give examples of analytic functions. A power series 
0

n
n

n
a z




 with non-zero radius of 

convergence R, converges for |z|< R, and so we can define a function f by    
0

| | .n
n

n
f z a z z R





  The 

function f (z) is called sum function of the power series. 

1.3.9 Theorem: The sum function f (z) of the power series 
0

n
n

n
a z




 represents an analytic function 

inside its circle of convergence. Further, every power series possesses derivatives of all order within its 
circle of convergence and these derivatives are obtained by term by term differentiation of the given 
power series. 
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Proof. Let the radius of convergence of the power series 
0

n
n

n
a z




 be R and let 

      1

0 0
,n n

n n
n n

f z a z z n a z
 



 

    

The radius of convergence of the second series is also R. Suppose that z is any point within the circle of 
convergence so that |z| < R. Then there exists a positive number r such that |z| < r < R.  For convenience, 
we write |z| = ρ, |h| =. Then ρ < R. Also h may be so chosen that ρ+  < R. 

Since 
0

n
n

n
a z




 is convergent in |z|<R, 

0

n
n

n
a r




 is bounded for 0 < r < R so that |an rn| < M where M is 

finite positive constant. Thus, we have 

        f z h f z
z

h


 


  1

0

n n
n

n
n

z h z
a nz

h






  
  

  
  

             2 1

0

1
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2
n n n

n
n

n n
a z z h h


 



 
   

 
  

              2 1

0

1
| | ...

2
n n

n
n

n n
a z h h


 



 
   

 
  

            2 1

0

1
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2
n n

n
n

n nM
r

  


 



 
   

 
  

                   1

0
( )n n n

n
n

M n
r

    






        

            
0

n n n

n

M n
r r r

    
 





              
       

                       (2) 

Now, 
2

0
1 ........

n

n r r r
     



           
   

  1 .
1

r
r

r
   

 
  

 

and   

   

2

0
1 ......

1

1

n

n r r r
r

r
r

  

 





         
   

 



 

Let us write 
2 3

1. 2. 3. ......
n

S n
r r r r
                  

     
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Then         
2 3

2. ......S
r r r
          

   
 

Subtracting, we get 

   

2

1 .....

/
1 /

S
r r r

r
r r

  

 
 

         
   

 
 

 

or     
 2

rS
r






 

Using the values of these sums, (2) becomes 

   

     
 

  

2

2

f z h f z M r r rz
h r r r

Mr
r r


    


  

  
    

     


  

 

Which tends to zero as → 0. 

Hence,       
0

lim
h

f z h f z
z

h




 
  

It follows that f (z) has the derivative (z). Thus, f (z) is differentiable so that f (z) is analytic for |z| < R. 
Again, since the radius of convergence of the derived series is also R, so (z) is also analytic in |z| < R. 
Successively differentiating and applying the theorem, we see that the sum function f (z) of a power 
series possesses derivatives of all orders within its circle of convergence and all these derivatives are 
obtained by term by term differentiation of the series.  

  In other words, a power series represents an analytic function inside its circle of convergence. 

1.3.10 Example: Find the radius of convergence of the following power series: 

(i) 
0

n

n
n

z
n




    (ii) 2

0

2
1

n n

n

z
in



    (iii)
2

0

( )
2

n

n

n z
n




   

Solution: (i) 
0

n

n
n

zCompare with
n






0

n
n

n
a z




 , 1

n na
n

   

1/
1/1 1 1 1lim | | lim lim 0.

n
n

n nn n n
a

R n n
R

  
    


  

  

(ii) Here, 2
2

1

n

na
in





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 

1/1/
1/

2 4

1/2 1/24
4

4

1/2

2/ 4

1 2 2lim | | lim lim
1 1

1 1lim lim
12 1 2 1

1 1 1lim 1
22

nnn n
n

nn n n

n nn n

n

nn

a
R in n

n n
n

n n

 

  

 





 
    

  

 
       

    
 

  

     2R   

(iii) Here, 
2( )

2n
na
n

 . Therefore,   
 

2
1

2

1 21 lim lim
2 2

n

n n
n

n na
R a n n



 


 


  

        
  

 
 

2
111 1 1lim lim lim
12 2 2 1 2 2 1 44 1

2
n n n

n n n
n n n

n
  

 
   

     
 

  

4R    

1.3.11 Example: Find R for the following series: 

(a)  
0

3 4 n n

n
i z





       (b) 
   

1

1 2n n

n

z i
n





 
   

(c)  
1

log n n

n
n z




       (d) 

0

2
1 2

n

n

n i z
i n





 
   

  

Solution: (a) Here  3 4 n
na i   

   
1/

1/1 lim | | lim 3 4 lim 3 4 9 16 5.

5

nnn
nn n n

a i i
R

R
  

       

 
  

(b)  Series is 
   

1

1 2n n

n

z i
n





 
  comparing with  

1

n
n

n
a z a





 . 

Here a = 2i, which is the centre of the circle of convergence 

    1

1

1 1
,

1

n n

n na a
n n





 
  


 

1

1
n

n

a n
a n
      
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11 1lim lim lim 1
11 1

n

n n n
n

a n
R a n

n



  
   

 
  

Hence, 1R  . 

(c) Here,  log n
na n   

 
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1/1 lim | | lim log lim log .

0

nnn
nn n n

a n n
R

R
  

      
 

 

(d) Here, 2
1 2n

n ia
i n



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  
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 
 

 

1R    

1.3.12 Example: Find that the series 

  
   

 
2. 1 1.1 ...

1. 1.2. 1
a a b ba b z z

c c c
 

  


  

has unit radius of convergence. 

Proof: Here,        
   

1 ... 1 1 ... 1
1.2... . 1 ... 1n

a a a n b b b n
a

n c c c n
     


  
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     
  
     
  

    
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1.3.13 Example: Find the radius of convergence of the series 

  2 31.3 1.3.5 ...
2 2.5 2.5.8
z z z     

Solution: Here,  
 

1.3.5... 2 1
2.5.8... 3 1n

n
a

n





 

   
   1

1.3.5... 2 1 2 1
2.5.8... 3 1 3 2n
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 
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 
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
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  3 .
2

R   

1.3.14 Example: Find the domain of convergence of the series 
2
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1 .
1

n

n
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i





 
  
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Solution: Consider the transformation 2z   then, the series becomes 
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 
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 

                         

       

  

Now, the given series is convergent if  

1 | 1 |lim 1 . . 1
2

n

n
n

U
i e 




 

U
  

i.e.       | 1| 2    

i.e.       2| 1| 2z    ,which gives domain of convergence. 

1.3.15 Example:  Examine the behavior of the power series  

 2
2 log

n

n

z
n n




  on the circle of convergence. 
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Solution: Here 
 2

1
logna
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  and 
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1 log 1
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      

  

     = 
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1 1
1 11 log 1

1
log

n n
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 
 
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1 1
1 11 1 ...1

log 2 logn n n nn

 
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11 lim 1
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n
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a
R a
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


  

 

 

The radius of convergence of the series is one and centre is at z = 0. 
For every point on the circle of convergence, we have  

   2 2
1

log log

nz
n n n n

  , on the circle |z| = 1 

Also 
 2

1
logn n

 is convergent by Cauchy condensation test. Hence, the given series 
 2log

nz
n n

 is 

absolutely convergent for all z on the circle of convergence.  
1.3.16 Example: Find the domain of convergence of the following series 
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Solution: (i) Putting 1
z

 , the series becomes    
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2
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 

  
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 1
2

R   

Now the domain of convergence is given by 
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3 3

z     
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This represents a circle with centre at 4/3 and radius is 2/3. Thus, the series is convergent inside the 
circle. 

(ii) Take  
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Thus, the series is convergent if | | 1
5

z i
  i.e. | | 5z i  .Therefore, the power series is convergent for 

all values of z which lie inside the circle of radius 5  and centre at z i  .   

1.4. Multivalued Function and its Branches: The familiar fact that sin θ and cos θ are periodic 
functions with period 2π, is responsible for the non-uniqueness of θ in the representation z = |z|eiθ   i.e. z 
= reiθ. Here, we shall discuss non- uniqueness problems with reference to the function arg z,   log z and 
za.  We know that a function w = f (z) is multivalued for given z, we may find more than one value of w. 
Thus, a function f (z) is said to be single-valued if it satisfies  

   f (z) = f(z(r, θ)) = f(z(r, θ + 2π))  

otherwise it is classified as multivalued function. 

   For analytic properties of a multivalued function, we consider domains in which these functions 
are single valued. This leads to the concept of branches of such functions. Before discussing branches of 
a many valued function, we give a brief account of the three functions arg z, log z and za. 

1.4.1 Argument Function: For each z ∈  , z ≠0 , we define the argument of z to be 
   arg z= [arg z] = {θ ∈  : z = |z|eiθ} 
the square bracket notation emphasizes that arg z is a set of numbers and not a single number i.e. [arg z] 
is multivalued. In fact, it is an infinite set of the form {θ+2nπ: n ∈ I}, where θ is any fixed number such 
that eiθ =	 ௭

|௭|
 . For example arg i = {(4n + 1)π/2 : n ∈ I} 

Also, arg(1/z) = { –θ : θ ∈	arg z} 
Thus, for z1, z2 ≠ 0, we have 
   arg(z1z2) =  { θ1 + θ2 : θ1 ∈	arg z1, θ2 ∈	arg z2} 
                        =arg z1 + arg z2 

and         arg 1

2

z
z

 
 
 

= arg z1 – arg z2 

For principal value determination,  we  can  use  Arg z = θ ,  where  z =  |z| eiθ,  –π  <θ  ≤  π  
(or 0  ≤ θ < 2π). When z performs a complete anticlockwise circuit round the unit circle, θ increases by 
2π and a jump discontinuity in Arg z is inevitable. Thus, we cannot impose a restriction which 
determines θ uniquely and therefore for general purpose, we use more complicated notation arg z or [arg 
z] which allows z to move freely about the origin with θ varying continuously. We observe that 

arg z= [arg z] = Arg z+ 2n π, n ∈	I. 
1.4.2 Logarithmic Function. We observe that the exponential function ez is a periodic function with a 
purely imaginary period of 2πi, since 

   2 2 2. , 1.z i z i z ie e e e e       

i.e.          exp(z+2πi) = exp z for all z. 
If w is any given non-zero point in the w-plane then there is an infinite number of points in the  
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z-plane such that the equation 
    w = ez                                        (1) 

is satisfied. For this, we note that when z and w are written as z = x + iy and w = ρei (–π < ≤ π), 
equation (1) can be put as 

    z x iy x iy ie e e e e                               (2) 

From here, ex = ρ and y =  + 2nπ, n ∈ I. 
Since the equation ex = ρ is the same as x = loge ρ= log ρ (base e understood), it follows that when       w 
=  ei (–π <   ≤ π), equation (1) is satisfied if and only if z has one of the values 

     z = log ρ + i( + 2nπ), n ∈	I                                     (3) 
Thus, if we write 

    log w = log ρ + i( + 2nπ), n ∈I                                (4) 
we see that exp (log w) = w, this motivates the following definition of the (multivalued) logarithmic 
function of a complex variable. 
The logarithmic function is defined at non-zero points z = reiθ (–π <θ ≤ π) in the z-plane as  
          log z = log r + i (θ + 2nπ), n∈	I                                  (5) 
The principal value of log z is the value obtained from (5) when n = 0 and is denoted by Log z. Thus
 Log z = log r + i θ i.e. Log z = log |z| + i Argz                                                 (6) 
Also, from (5) & (6), we note that 
          log z = Log z + 2nπi, n∈	I                              (7) 
The function Log z is evidently well defined and single-valued when z ≠0 . 
Equation (5) can also be put as 
   log z = {log |z| + iθ : θ ∈	arg z} 

or           [log z] = {log |z| + iθ: θ ∈[argz]}                      (8) 
or          log z = log |z| + iθ = log |z| + iargz                      (9)  
where θ = θ + 2nπ, θ = Argz. 
From (8), we find that 
   log 1 = {2nπi, n ∈ I}, log (-1) = {(2n+1) πi, n ∈I} 
In particular, Log 1 = 0 , Log (-1) = πi .  
Similarly,    log i = {(2n+1/2) πi, n∈ I}, log (-i) = {2n-1/2) πi, n∈ I} .  
In particular, Log i = πi/2, Log (-i) = -πi/2. 
Thus, we conclude that complex logarithm is not a bonafide function, but a multifunction. We have 
assigned to each z ≠ 0 infinitely many values of the logarithm. 
1.4.3 Complex Exponents: When z ≠0 and the exponent a is any complex number, the function za is 
defined by the equation. 
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    log log exp log
aa z a zw z e e a z                                    (1) 

Where log z denotes the multivalued logarithmic function. Equation (1) can also be expressed as  

   (log| | ){ : arg }a a z iw z e z     

or   (log| | ){ : [arg ]}a za i zz e       

Thus, many valued nature of the function log z will generally result in the many-valuedness of za. Only 
when ‘a’ is an integer, za does not produce multiple values. In this case za contains a single point zn. 

When a = 
1
n

, (n = 2, 3, ….), then 

      1/ 2 /1/ 1/ ,
n i m nn i nw z re r e m I       

We note that in particular, the complex nth roots of 1 are obtained as 

   wn = 1   2 1 /2 / , 1 , 0,1,... 1m i nm i n nw e w w e m n         

for example, i-2i = exp(-2i log i) = exp[-2i (4n+1)πi/2] 
          = exp [(4n+1)π], n ∈ I 
In should be observed that the formula  
   xa xb = xa+b, x, a, b, ∈	R 
can be shown to have a complex analogue (in which values of the multi-functions involved have to be 
appropriately selected) but the formula x1

a x2
a = (x1 x2)a, x1, x2, a ∈ R has no universally complex 

generalization. 
1.4.4 Branches, Branch Points and Branch Cuts: We recall that a multifunction w defined on a set     
S    is an assignment to each z ∈ S of a set [w(z)] of complex numbers. Our  main  aim is  that given a 
multifunction w defined on S, can we select, for each z ∈ S, a point f(z) in [w(z)] so that f(z) is analytic in 
an open subset G of S, where G is to be chosen as large as possible? If we are to do this, then f (z) must 
vary continuously with z in G, since an analytic function is necessarily continuous. 
 Suppose w is defined in some punctured disc D having centre a and radius R i.e. 0 < |z - a| < R and 
that f (z) ∈	 [w(z)] is chosen so that f(z) is at least continuous on the circle γ with centre a and radius  
r (0 < r < R). As z traces out the circle γ starting from, say z0 , f(z) varies continuously, but must be 
restored to its original value f(z0 ) when z completes its circuit, since f(z) is,  by  hypothesis, single 
valued. Notice also that if z – a = R eiθ(z), where θ(z) is chosen to vary continuously with z, then θ (z) 
increases by 2π as z performs its circuit, so that θ (z)  is  not  restored to its original value. The same 
phenomenon does not occur if z moves round a circle in the punctured disc D not containing a, in this 
case θ (z) does return to its original value. More generally, our discussion suggests that if we are to 
extract an analytic function from a multi- function w, we shall meet to restrict to a set in which it is 
impossible to encircle, one at a time, points a such that the definition of [w(z)] involves the argument of 
(z - a). In some cases, encircling several of these “bad” points simultaneously may be allowable. 
   A branch of a multiple-valued function f(z) defined on S    is any single-valued function F(z) 
which is analytic in some domain D  S at each point of which the value F(z) is one of the values of f(z). 
The requirement of analyticity, of course, prevents F(z) from taking  on  a  random selection of the 
values of f(z). 
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   A branch cut is a portion of a line or curve that is introduced in order to define a branch F(z) of 
a multiple-valued function f(z). 
   A multivalued function f(z) defined on S   is said to have a branch point at z0 when z 
describes an arbitrary small circle about z0, then for every branch F(z) of  f(z), F(z) does not  return to its 
original value. Points on the branch cut for F(z) are singular points of F(z) and any point that is common 
to all branch cuts of  f(z) is called a branch point. For example, let us  consider the logarithmic function
  
   log z = log r + iθ = log |z| + iarg z                                  (1) 
If we let α denote any real number and restrict the values of θ in (1) to the interval α <θ< α + 2π, then 
the function 
   log z = log r + iθ (r >0 , α < θ < α+2π)                           (2)  
with component functions 
   u(r, θ) = log r and v(r, θ)=θ                            (3) 
is single-valued, continuous and analytic function. Thus for each fixed α, the function (2) is a branch of 
the function (1). We note that if the function (2) were to be defined on the ray θ = α, it would not be 
continuous there. For, if z is any point on that ray, there are points arbitrarily close to z at which the 
values of v are near to α and also points such that the values of v are near to α + 2π. The origin and the 
ray θ = α make up the branch cut for the branch (2) of the logarithmic function. The function 
   Log z = log r + i θ (r >0 , - π <θ< π)                       (4) 
is called the principal branch of the logarithmic function in which the branch cut  consists of the origin 
and the ray θ = π. The origin is evidently a branch point of the logarithmic function. 

y 

 

O 

x 

 
For analyticity of (2), we observe that the first order partial derivatives of u and v are continuous and 
satisfy the polar form 

   1 1,r ru v v u
r r     

of the C-R equations. Further 

   
   log

1 10

i
r r

i
i

d z e u iv
dz

e i
r re










 

    
 

 

Thus,         1log | | 0, arg 2d z z r z
dz z

         

In particular 
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      1log | | 0, rg .d z z A z
dz z

       

Further, since log 1
z

=-log z, ∞ is also a branch point of log z. Thus a cut along any half-line from 

0 to ∞ will serve as a branch cut. 
Now, let us consider the function w = za in which a is an arbitrary complex number.  We can write 

   log logaa z a zw z e e                           (5) 
where many-valued nature of log z results is many-valuedness of za. If Log z denotes a definite branch, 
say the principal value of log z, then the various values of za will be of the form 

    2 2a Log z n ia a Log z n iaz e e e                             (6) 

where log z = Log z + 2nπi, n∈ I. 
The function in (6) has infinitely many different values. But the number of different values of za will be 
finite in the cases in which only a finite number of the values e2πian, n ∈ I, are different from one another. 
In such a case, there must exist two integers m and 'm  ( 'm =m) such that 

    2 '2 2 ' 1ia m miam iame e or e     . 

Since ez = 1 only if z = 2πin, thus we get a (m - 'm ) = n and therefore it follows that a is a rational 
number. Thus za has a finite set of values iff a is a rational number. If a is not rational, za has infinity of 
values. 
We have observed that if z = reiθ and α is any real number, then the branch  
   log z = log r + iθ (r >0 , α < θ < α+2π)                        (7) 
of the logarithmic function is single-valued and analytic in the indicated domain. When this branch is 
used, it follows that the function (5) is single valued and analytic in the said domain. 
The derivative of such a branch is obtained as 
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As a particular case, we consider the multivalued function f(z) = z1/2 and we define   

   1/2 /2 , 0, 2iz re r                                 (8) 

Where the component functions 

      , cos / 2, , sin / 2u r r v r r                       (9) 

are single valued and continuous in the indicated domain. The function is not continuous on the line     θ 
= α as there are points arbitrarily close to z at which the values of v (r, θ) are nearer to sin / 2r  and 
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also points such that the values of  v(r, θ) are nearer to – sin / 2r  . The functions (8) is differential as 
C-R equations in polar from are satisfied by the functions in (9) and 
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 
 

Thus (8) is a branch of the function f (z) = z1/2 where the origin and the line θ = α form branch cut.  
When moving from any point z = reiθ about the origin, one complete circuit to reach again,   at z, we 
have changed arg z by 2π. For original function z = reiθ, we have  

   /2iw r e   and after one complete circle,  2 /2 /2.i iw re re      
Thus, w has not returned to its original value and hence change in branch has occurred. Since a complete 
circuit about z = 0 changed the branch of the function, z = 0 is a branch point for the function z1/2. 
 



 

SSEECCTTIIOONN--IIII  

2.1 Complex Integration: 
Let [a, b] be a closed interval, where a, b are real numbers. Divide [a, b] into subintervals  

     0 1 1 2 1  ,  ,  ,  , ,  ,           n na t t t t t t b     (1) 

by inserting n1 points t1, t2,…, tn1 satisfying the inequalities 

0 1 2 1       n na t t t t t b       

Then the set P = {t0, t1,…, tn} is called the partition of the interval [a, b] and the greatest of the numbers 
t1 t0, t2 t1,…, tn tn1 is called the norm of the partition P. Thus, the norm of the partition P is the 
maximum length of the subintervals in (1). 
2.1.1 Arcs and Curves in the Complex Plane: 

An arc (path) L in a region G  is a continuous function z(t):[a, b]G for t[a, b] in . The arc L, 
given by z(t) = x(t) + iy(t), t  [a, b], where x(t) and y(t) are continuous functions of t, is therefore a set 
of all image points of a closed interval under a continuous mapping. The arc L is said to be differentiable 
if z(t) exists for all t in [a, b]. In addition to the existence of z(t), if z(t) : [a, b]  is continuous, then  
z(t) is a smooth arc. In such case, we may say that L is regular and smooth. Thus a regular arc is 
characterized by the property that x(t) and y(t) exist and are continuous over the whole range of 
values of t. 
We say that an arc is simple or Jordan arc if z(t1) = z(t2) only when t1 = t2 i.e. the arc does not intersect 
itself. If the points corresponding to the values a and b coincide, the arc is said to be a closed arc (closed 
curve). An arc is said to be piecewise continuous in [a,b] if it is continuous in every subinterval of [a, b]. 
2.1.2 Rectifiable Arcs: Let z = x(t) + iy(t) be the equation of the Jordan arc L, the range for the 
parameter t being t0 t T.Let z0, z1,…, zn be the points of this arc corresponding to the values t0, t1,…, tn 
of t, where t0< t1 < t2<…<tn = T. Evidently, the length of the polygonal arc obtained by joining 
successively z0and z1, z1 and z2 etc. by straight line segments is given by 
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Figure 1 
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If this sum n tends to a unique limit l<, as n and the maximum of the differences tr tr1(r =1, 
2,…, n) tends to zero, we say that the arc L defined by z = x(t) + iy(t) is rectifiable and that its length is 
l. In this connection, we have the following result. 

“A regular arc z = x(t) + iy(t), t0 t T is rectifiable and its length is
0

12 2 2[(x'( )) (y'( )) ]
T

t
t t dt .” 

2.1.3 Contours: Let PQ and QR to be two rectifiable arcs with only Q as common point, then the arc PR 
is evidently rectifiable and its length is the sum of lengths of PQ and QR. Thus, it follows that Jordan arc 
which consists of a finite number of regular arcs is rectifiable, its length being the sum of lengths of 
regular arcs of which it is composed. Such an arc is called contour. Thus a contour C is continuous 
chain of finite number of regular arcs. i.e. a contour is  a  piecewise smooth arc. 

By a closed contour, we shall mean a simple closed Jordan arc consisting of a finite number of 
regular arcs i.e. contour is closed and does not intersect. Clearly, every closed contour is rectifiable. 
Circle rectangle, triangle, ellipse etc. are examples of closed contour. 
2.1.4 Simply Connected Region: Aregion D is said to be simply connected if every simple closed 
contour within it encloses only points of D. In such a region every closed curve can be shrunk 
(contracted) to a point without passing out of the region (Figure 2). If the region is not simply connected, 
then it is called multiply connected (Figure 3) 

      Simply connected region (Figure2)     Multiply connected regions (Figure3) 

2.1.5 Riemann’s Definition of Complex Integration: First, we define the integral as the limit of a sum 
and later on, deduce it as the operation inverse to that of differentiation. 

Let us consider a function f(z) of the complex variable z. We assume that f(z) has a  definite  
value at each point of a rectifiable arc L having equation 

z(t) = x(t) + iy(t), t0 t T. 

We divide this arc L into n smaller arcs by points z0, z1, z2,…, zn1, zn ( = Z, say) which correspond to 
the values t0< t1< t2,…, <tn1<tn (= T) of the parameter t and then form the sum 

1
1

( ) ( ) 
n

r r r
r

f z z 


   , 

where r is a point of L between zr1 and zr. If this sum  tends to a unique limit I as n and the 
maximum of the differences tr tr1 tends to zero, we say that f(z) is integrable from z0 to Z along the arc 
L, and we write 

   
L

I f z dz  . 

The direction of integration is from z0 to Z, since the points on x(t) + iy(t) describe the arc L in this 
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sense when tincreases. 
2.1.6 Remarks: 

(i) Some of the most obvious properties of real integrals extend at once to complex integrals, 
forexample,  

      [    ,( )] g
L L L

f z dz fg z z dz z dz     

     dz ,
L L

Kf z K f z dz   K being constant, 

   
'

 d ,z
L L

f z f z dz 
 

where L denotes the arc L described in opposite direction. 
(ii) In the above definition of the complex integral, although z0, Z play much the same parts as the 

lower and upper limits in the definite integral of a function of a real variable, we do notwrite 

0
( )z

zI f z dz   
This is dictated essentially by the fact that the value of I depends, in general, not only on the 
initial and final points of the arc L but also on its actual form. 

In special circumstances, the integral may be independent of path from z0 to z as shown in the following 
example. 
2.1.7 Example: Using the definition of an integral as the limit of a sum, evaluate the integrals 

     
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i d z ii d z iii z d z  
 

where L is a rectifiable arc joining the points z =  and z = . 

Solution: We first observe that the integrals exist since the integrand is continuous on L in each case. 
(i) By definition, we have 
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 = Arc length of L= l (say) 
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iii Let I z dz z z 
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          (1) 

where r is any point on the sub arc joining zr1 and zr. 

Since r is arbitrary, we set r = zr and r1 = zr1 successively in (1) to find 
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Adding these two results, we get 
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 Therefore,  2 21
2

I    . 

In particular, if L is closed, then β=α and thus 

0, 0.
L L

dz z dz    

2.1.8 Theorem (Integration along a Regular Arc):Let f(z) be continuous on the regular arc L 
whoseequationisz(t)=x(t)+iy(t),t0tT.Provethatf(z)isintegrablealongL andthat 
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where F(t) denotes the value of f(z) at the point of L corresponding to the parametric value t. 
Proof: Let us consider the sum 
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where r is a point of L between zr1 and zr. If r is the value of the parameter t corresponding to r, then 
r lies between tr1 and tr. Writing F(t)=(t)+i(t), where and are real, we find that 
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1 2 3 4 i i        
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1 4 2 3( )  ( ) i        

We consider these four sums separately. 
By the mean value theorem of differential calculus, the first sum is 

11
1

( ) ( )
n

r r r
r

x x  


   

  
1

'
1(( ' ( )))r r

n

r
r rx t t  


  

Because,(f(a + h) f(a) = hf (a + h), 0  1.

Therefore,  xrxr1 = x(tr) x(tr1) 

 =(trtr1)x(r) , where r lies between tr1 and tr. 

We first show that 1 can be made to differ by less than an arbitrary positive number, however small, 

from the sum '
1

1
1(t )( ) ' ( )r r r

n

r
rt x tt


 

 
by making the maximum of the differences trtr1 

sufficiently small.
 Now, by hypothesis, the functions (t) and x(t) are continuous. As continuous functions are necessarily 

bounded, there exist a positive number K such that theinequalities |(t)|K,|x(t)|Khold for t0 t T. 
Moreover, the functions are also uniformly continuous, we can, therefore, pre assign an arbitrary 
positive number , as small as we please, and then choose a positive number , depending on , such 
that 

|(t)(t)|<,|x(t)x(t)|<,whenever |t t| < 

Hence, if the maximum of the differences tr tr1 is less than , we have 

|(r)x(r)(tr)x(tr)| =|(r){x(r)x(tr)}+x(tr){(r)(tr)}| 

    |(r)|.|x(r)x(tr)|+|x(tr)|.|(r)(tr)| 

    < 2K
and therefore, 

|11| < 2K (T  t0). 
Since we know that 

1
( ) lim ( )

nb
i ia n i

f x dx f x x
 

   

By the definition of the integral of a continuous function of a real variable, 1 tends to the limit 

  
0

( ) x'( )T
t t t dt  

as n and the maximum of the differences tr tr1 tends to zero. Since |1 1| can be made as small 
as we please by taking  small enough, 1 must also tend to the samelimit. 
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Similarly the other terms of  tend to limits. Combining these results, we find that  tends to the limit 

               
0 0
[ ' ' ] ' 'T T

t tt x t t y t dt i t x t t y t dt        

     
0

[x' ' ]T
t F t t iy t dt   

and so f(z) is integrable along the regular arc L. 

2.1.9 Remark: The result of the theorem (2.1.8) is not merely of theoretical importance as an existence 
theorem. It is also of practical use since it reduces the problem of evaluating a complex integral to the 
integration of two real functions of a realvariable. 

More generally, it can be shown that if f(z) is continuous on a contour C, it is integrable along C, 
the value of its integral being the sum of the integrals of f(z) along the regular arcs of which C is 
composed. 

2.1.10 Example: Evaluate 1

L
dz

z a


, where L is the circle .z a r   

Solution:Let 1

L
I dz

z a
 


 

The circle in the parametric form can be written as 

,0 2iz a re        

i iz a re dz re id        

Thus,  
2 2

0 0

1 2i
iI re id id i

re

 
       . 

2.1.11 Theorem (Absolute Value of a Complex Integral): If f(z) is continuous on a contour C of 

length l, where it satisfies theinequality    ,
C

f z M then f z dz M l  . 

Proof:Without loss of generality, we assume that C is a regular arc. 

Now, if g(t) is any complex continuous function of the real variable t, we have 

         1 1
1 1

n n
r r r r r r

r r
g t t t g t t t 

 
      

and so, on proceeding to the limit, we get 

   
0 0

T T
t tg t dt g t dt  . 

Hence, using the result of the previous theorem, we have 
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     
0

0

| ( )[x' ' ] |
TT

t
t

f z dz F t t iy t dt    

     
0

| x' ' |T
t F t t iy t dt   

         
0
| x' ' | ( )T

tM t iy t dt f z F t onC F t M       

0
| |T dz

t dtM dt   

0
| | .T

tM dz M l   

2.1.12 Remarks: 
(i) The result of the above theorem (2.1.11) is also called estimate of the integral.  
(ii) So far we had assumed that f(z) is only continuous on the regular arc L along which we take its 
integral. We now impose the restriction that f(z) is analytic and suppose further that L lies entirely 
within the simply connected domain D within which f(z)is regular. Then    

L
f z dz certainly exists, 

since f(z) is necessarily continuous on L. But we are no win a position to infer much more about this 
integral i.e. the integral is independent of path of integration. An equivalent form of this result is Cauchy 
theorem, the keystone in the theory of analytic functions. 
 First we consider the elementary form of Cauchy theorem which requires the additional 
assumption that the derivative of f(z) is continuous. This form of Cauchy theorem is also known as 
Cauchy fundamental theorem. 
2.1.13 Cauchy Theorem (Elementary Form): If f(z) is analytic function whose derivative f (z) exists 
and is continuous at each point within and  on a closed contour C,then    0

C
f z dz  . 

Proof:Let D denotes the closed region which consists of all points within and on C. If we write  
z = x + iy, f(z) = u + iv, then we have 

    ( )   
C C

f z dz u iv dx idy     

)  ( )(  
C C

iu d vx vdy dx udy                     (1) 

Now, we use the Green’s theorem for a plane which states that if    ,  , ,  , ,P QP x y Q x y
y x
 
 

continuous 

functions within a domain Dare and if C is any closed contour in D, then 

( )
C D

Q PP dx Qdy dx dy
x y

  
       

              (2)

By hypothesis f (z) exists and is continuous in D, so u, v and their partial derivatives ux, vx, uy, vy are 
continuous functions of x and y in D. Thus the conditions of Green’s theorem are satisfied. Hence 
applying this theorem in (1), weobtain 
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( )
C D D

v u u vf z dz dx dy dx dy
x y x y

     
             

(Using C-R equations) 

D D

u u u udx dy i dx dy
y y x x

                
= 0 +i0 = 0. This completes the result. 

 An important step was pointed out by Goursat who showed that it is unnecessary to assume the 
continuity of f (z), and that Cauchy’s theorem is true if it is only assumed that f (z) exists at each point 
within and on C. Actually, the continuity of the derivative f (z) and its  differentiability  are  
consequences of Cauchy’s theorem. This form of Cauchy theorem is also known as Cauchy-Goursat 
Theorem. 
2.1.14 General Form of Cauchy’s Theorem:If a function f(z) is analytic and one-valued within and on 
a simple closed contour C, then ( )

C
f z dz   0. 

Proof:First of all, we observe that the integral certainly exists, since a function which is analytic is 
continuous and a continuous function is integrable. For the proof of the theorem, we divide up the region 
inside the closed contour C into a large number of sub-regions by a network of lines 
paralleltotherealandimaginaryaxes.SupposethatthisdividestheinsideofCintoanumberof squares C1, C2,… 
CM say, and a number of irregular regions D1, D2,…, DN say, parts of whose boundaries are parts of C 
(Fig. 1) . 

 

 
1 1

( ) ( )
m n

M N

m nC C D
f z dz f z dz f z dz

 
     ,       (1) 

where each contour is described in positive (anti-clockwise) direction. 
Consider, for example, any two adjacent squares ABCD and DCEF with common side CD 

(Fig.2). The side CD is described from C to D in the first square and from D to C in the second. Hence, 
the two integrals along CD cancel. So all the integrals cancel except those which form part of C itself, 
since these are described once only. Moreover within the integrals of R.H.S. of (1), there are contained 
integral along all the parts of the contour C into which C is divided on account of the subdivision. Thus 
the result (1) is true. 
We now use the fact that f(z) is analytic at every point.  This means that, if z0 is any point inside or on 
C,then 

0
0

0

( ) ( )
'( )

f z f z
f z

z z


 


, provided that 0 < |z  z0| < = (z0) 
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i.e. if |zz0| <, then |f(z) f(z0)  (zz0) f (z0)| |zz0|      (2) 
If we consider any particular region Cm or Dn in the above construction, it is evident that we can 

choose its side so small that (2) is satisfied if z0 is a given point of the region, and z is any other point. It 
is not, however, immediately obvious that we can choose the whole network so that the conditions are 
satisfied in all the partial regions at the same time. We shall prove that this is actually possible. i.e. 
“having given , we can choose the network in such a way that, in every Cm or Dn , there is a point z0 
such that (2) holds for every z in this region”. This actually, means that the function is uniformly 
differentiable throughout the interior of C. We prove it by well known process of sub division. 

Suppose that we start with a network of parallel lies at constant distance l between every 
consecutive pair of lines. Some of the squares formed by these lines may each contain a point z0of the 
desired type. We leave these squares as they are. The rest we subdivide by lines midway between the 
previous lines. If there still remain any parts which do not have the required property, we subdivide them 
again in the same way. Obviously, there are two distinct possibilities. The process may terminate after a 
finite number of steps and then the result is obtained, or it may go on in definitely. 

In the second case, there is at least one region which we can subdivide indefinitely without 
obtaining the required result. We call this region, including its boundaries, R1. After the first sub 
division, we obtain a part R2 contained in R1 with the same property. Proceeding in this way, we have an 
infinity of regions R1, R2,…, Rn each contained in the previous one, and in each of which inequality (2) 
is impossible. Since R1 R2 R3,…, there must be a point z0 common to all the regions Rn (n = 1, 2,…) 
and since the dimensions of Rn decrease indefinitely, we can have |zz0| < for sufficiently large n, say n 
> n0 and for every z in Rn. But f(z) is analytic at z0. Hence (2) holds for this z0 in Rn if n > n0. This 
contradicts the statement that in no Rn, there exists a point z0satisfying inequality (2). Thus the second 
possibility is ruled out and (2) is satisfied for every point in the region C. 
Now, let us consider one of the squares Cm of side lm. In Cm, by inequality (2), we have 

f(z) = f(z0) + (z  z0) f (z0) + (z), where |(z)|  |z z0| 

Hence,         '
0 0 0 ] [ ( )

m m mC C C
f z dz f z z z f z dz z dz           (3) 

The first integral in (3) simplifies to 

     0 0 0 0'  '[  ]
m mC C

f z z f z fd zz zdz   and therefore vanishes, since  0, 0 
m mC C

dz zdz   (by 

definition). 

 Also, by virtue of the result regarding absolute value of a complex integral, we obtain 

0( )

2 .4 ,
m mC C

m m

z dz z z dz

l l

   


 

since |zz0| 2 lm for z0 inside Cm and z on Cm and the length of Cm is 4lm 

In the case of any one of the irregular region Dn, the length of the contour is not greater than 4ln + n, 
where n is the length of the curved part of the boundary. Hence 
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( ) 2 (4 ).
n

n n n
D

z dz l l    

Adding all the parts, we obtain 

1 1
( ) ( ) ( )

m n

M N

m nC C D
f z dz f z dz f z dz

 
      

  
1 1

( ) ( )
m n

M N

m nC D
z dz z dz 

 
     

  224 2 (4 )m n n nl l l        

  2 24 2 ( ) 2m n nl l l            (4) 

where l denotes some constant greater than every one of the ' nl s . Now  2 2
m nl l  is the area of a 

region which just includes C and is therefore bounded. Also n is the length of the contour C. Hence 
the R.H.S. of (4) is less than a constant multiple of . But the L.H.S. is independent of , and  is 
arbitrarily small, it follows therefore that ( ) 0

C
f z dz   which proves the theorem. 

2.1.15 Corollary: Suppose f(z) is analytic in a simply connected domain D, then the integral along any 
rectifiable curve in D joining any two points of D is the same i.e. it does not depend on the curve joining 
the two points i.e. integral is independent of path. 

Proof: Suppose the two points  1A z and  2B z of the simply connected domain D are joined by the 
curves 1C and 2C as shown in the figure. 

Then, by Cauchy’s theorem 

( ) 0
ALBMA

f z dz   

i.e. ( ) ( ) 0
ALB BMA

f z dz f z dz    

i.e. ( ) ( ) 0
ALB AMB

f z dz f z dz    

i.e. 
1 2

( ) ( )
C C

f z dz f z dz             Figure 5 

2.1.16 Extension of Cauchy’s Theorem to Contours Defining Multiply Connected Region: By 
adopting a suitable convention as to the sense of integration, Cauchy’s theorem can be extended to the 
case of contours which are made up of several distinct closed contours. Consider, for example, a 
function f(z) which is analytic in the multiply connected region R bounded by the closed contour C and 
the two interior contours C1, C2 as well as on these contours themselves. The complete contour C* which 

 D B(z2) 

L M 

    A(z1) 

c2 

c1 
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is the boundary of the region R is made up of the three contours C, C1 and C2 and we adopt the 
convention that C* is described in the positive sense if the region R is on the L.H.S. w.r.t. this sense of 
describing it. Then by Cauchy’s theorem 

    
*

 0
C

f z dz   

where the integral is taken round the complete contour C* in the positive sense. 

       
Figure 6 

Practically, we deal with this case by drawing transversals like ab, cd and by applying Cauchy’s theorem 
for a simple closed contour abbadccda. It is found convenient in applications to express the same 
result in the form 

     
1 2

     
C C C

f z dz f z dz f z dz   
 

where all the three integrals are now taken in the same (positive) sense. 
An exactly similar result holds in case there are any finite number of closed contours C1, C2,…,  Cm 
inside a closed contour C and f(z) is analytic in the multiply connected region bounded by  them as well 
as on them. Then we have 

       
1 2

    ...  
mC C C C

f z dz f z dz f z dz f z dz        

whereall the contours are described in positive sense. 

2.1.17Theorem (Cauchy’s Integral Formula): Let f(z) be analytic inside and on a closed contour C 
and let z0 be any point inside C.Then 

   
0

0

1 .
2 C

f z
f z dz

i z z
 


 

Proof: We consider the function 
 

0

f z
z z

. This function is analytic throughout the region bounded by C 

except at 0z z  . Then, by 2.1.16, We have 

 


c 

C 



a    b 

       d 
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 z0 


C 

  
0 0

( )

C

f zf z dz dz
z z z z

 
 

 

where is any closed contour inside C including the point 0z  as an interior point. 

Figure 7 

Let us choose  to be the circle with centre 0z  and radius . Since f(z) is continuous, we can take 

 so small that on ,    0| |f z f z  where  is any pre assigned positive number. 

Now, 0 0

0 0

[ ( ) ( )] ( )( ) f z f z f zf z dz dz
z z z z 

 
 

 
 

  0
0

0 0

( ) ( )1( )
f z f z

f z dz dz
z z z z




  

 
            (1)

 
For any point z on 

0
i iz z e dz i e d        

0 0

2 2

0

1 2
i

i
e ddz id i

z z e


 



   


    


 
and 

2
0 0

0 0

( ) ( ) ( ) ( ) i
i

f z f z f z f zdz e id
z z e

 



 


 

 


 

   
0

2
0[ ( ) ( )]f z f z id    

   
0

2 2d    
 

Hence from (1), we get 

0
0

( ) 2 ( ) 2 .
C

f z dz if z
z z

   


 
Since  is arbitrarily small and L.H.S. is independent of , it follows that 
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0
0

( ) 2 ( ) 0
C

f z dz if z
z z

 


 

Therefore, 0
0

1 ( )( )
2 C

f zf z dz
i z z

 


. 

 Which proves the result.
 2.1.18 Corollary(Extension of Cauchy’s Integral Formula to Multiply Connected Region): If f(z) is 

analytic in a ring shaped region bounded by two closed contours C1and C2 and z0 is a point in the region 
between C1 and C2,then 

2 1

0
0 0

1 ( ) 1 ( )( ) ,
2 2C C

f z f zf z dz dz
i z z i z z 

  
 

where C2 is the outer contour.
 

Proof: Describe a circle  of radius  about the point z0 such that the circle lies in the ring shaped 

region. The function 
0

( )f z
z z

is analytic in the region bounded by three closed contours C1, C2 and  

 

 
Figure 8 

Thus by 2.1.16, we have 

2 10 0 0

( ) ( ) ( )

C C

f z f z f zdz dz dz
z z z z z z

   
  

 

where the integral along each contour is taken in positive sense. Now, using Cauchy’s integral formula, 
we find

 

2 1

0
0 0

( ) ( ) 2 ( )
C C

f z f zdz dz if z
z z z z

  
 

 

Hence, 
2 1

0
0 0

1 ( ) 1 ( )( ) .
2 2C C

f z f zf z dz dz
i z z i z z 

  
 

which proves the result. 

2.1.19 Poisson’s Integral Formula: Let f(z) be analytic in the region z R then for 0 ,r R   we 
have 

 

 
 z0 



C1 C2 
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2 22

2 2
0

1 ( ) (Re )( )
2 2 cos( )

i
i R r ff r e d

R Rr r

 
  


 

    
where  is the value of  on the circle .z R  

Proof: Let C denote the circle .z R Let 0 ,iz r e r R      by any point inside C, then by Cauchy’s 
integral formula,

 
0

0

1 ( )( )
2 C

f zf z dz
i z z

 


        (1) 

The inverse of 0z w.r.t. the circle z R  is 
2

0

R
z

 and lies outside the circle, so by Cauchy’s theorem, we 

have 

 

2

0

1 ( )0
2 C

f z dz
i Rz

z


 


  (2)
 

Subtracting (2) from (1), we get 

2
0

0
0 2

0
0

( ) ( )
1( )

2
( )( )C

Rz f z dz
z

f z
i Rz z z

z





 
 

 

2
0 0

2
0 0

( ) ( )1
2 ( )( )C

R z z f z dz
i z z R zz


 

 
 (3) 

Now, any point of circle C is expressible as .iz Re   Also 0
iz r e  , so 0

iz r e  .Therefore, 

2 2 2
0 0R z z R r     (4) 

2 2 2 2
0 0 0 0 0 0( )( )z z R zz zR z z z R z z z       

   
3 2 2 2 2i i i i iR e R e r e r e R r Re         

   2 2[ 2 cos( ) ]iRe R r R r                   (5) 

and idz Rie d  . 

Thus, (3) becomes 
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2 22

2 2
0

1 ( ) ( )( )
2 2 cos( )

i
i R r f R e df r e

R Rr r

 
  


 

  
            (6) 

which is the required result. 

Formula (6) can be separated into real and imaginary parts to get (f(z)=u+iv) 
2 22

2 2
0

1 ( ) ( , )( , )
2 2 cos( )

R r u R du r
R Rr r

  
  


 

  
 

2 22

2 2
0

1 ( ) ( , )( , )
2 2 cos( )

R r v R dv r
R Rr r

  
  


 

  
. 

2.1.20 Cauchy’s Integral Formula for the Derivative of an Analytic Function: If a function f(z) is 
analytic within and on a simple closed contour C and 0z  is any point inside C, then 

0 2
0

1 ( )'( )
2 ( )C

f zf z dz
i z z

 


. 

Proof: Let z0+h be a point in the neighbourhood of point z0and inside C. Then, Cauchy’s integral 
formula at these two points gives 

  0
0

1 ( )( )
2 C

f zf z dz
i z z

 


 

and 0
0

1 ( )( )
2 ( )C

f zf z h dz
i z z h

  
 

 

0 0

0 0

( ) ( ) 1 ( ) 1 1
2 ( )C

f z h f z f z dz
h i h z z h z z

  
      

 

   0

0 0

1 ( ) 1
2 ( ) ( )C

z zf z dz
i z z h z z h

 
      

 

   
1

0

0 0

1 ( ) 1
2 ( )C

z z hf z dz
i z z h z z

           
 

   
1

0 0

1 ( ) 1 1
2 ( )C

f z h dz
i z z h z z

           
 

   
2

0 0 0

1 ( ) 1 ...... 1
2 ( )C

f z h h dz
i z z h z z z z

              
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   20 0 0

1 ( ) 1 ......
2 ( ) ( )C

f z h dz
i z z z z z z

 
   

    
. 

Taking limit as h→0, we have 

0 0
0 0 0

( ) ( ) 1 ( ) 1lim 0 ......
2 ( )h C

f z h f z f z dz
h i z z z z

  
      

. 

Hence, f(z) is differentiable at z0 and 

0 2
0

1 ( )'( )
2 ( )C

f zf z dz
i z z

 


. 

2.1.21 Generalization: This result (2.1.20) has a very significant consequence in the fact that f (z) is 
itself analytic within C. i.e. derivative of an analytic function is also analytic. To prove this, it is enough 
to show that '( )f z has derivative at any point z0 inside C. Using Cauchy’s integral formula for f (z0) and 
f (z0+h) with the same restriction on h as before, we get 

 0 0 2 2
0 0

1 1 1'( ) '( )
2 ( ) ( )C

f z h f z f z dz
i z z h z z

 
    

    
 

or     00 0
2 2

0 0

2 2'( ) '( ) 1
2 ( ) ( )C

f z z z hf z h f z dz
h i z z z z h

  
 

  
 

by means of arguments parallel to those used in the proof of Cauchy’s formula for f (z0), we can easily 
show that ash0, the integral on R.H.S. tends to the limit 

3
0

2 ( )
2 ( )C

f z dz
i z z 


 

Thus f (z) has a differential co-efficient at z0, given by the formula 

0 3
0

2 ( )''( )
2 ( )C

f zf z dz
i z z

 


 

The arguments can obviously be repeated and we get the following result as a generalization.” If f(z) is 
analytic inside and on a closed contour C, it possesses derivatives of all orders which are all analytic 
inside C. The nth derivative f n(z0) at any point z0 inside C being given by the formula 

0 1
0

( )( )
2 ( )

n
n

C

n f z dzf z
i z z 

 


.” 

2.1.22 Remark: From Cauchy integral formula, we observe a remarkable fact about an analytic 
function. Its values everywhere inside a closed contour are completely determined by its values on the 
boundary. In fact the values of each derivative of an analytic function are determined just by the values 
of the function on the boundary. 



62 Section–II 

2.1.23 Example: Evaluate 
0

, 1,2,...
( )C m

dz m M
z z




 where C is a single closed contour. 

Solution: The function 
0

1
( )mz z

is analytic except at z = z0. Hence if C does not enclose z0, then by 

Cauchy’s theorem, the integral is zero. If C encloses z0, then we choose a circle  of small radius  with 
centre z0. 

 
Figure 9 

Thus, we get 

0 0
,

( ) ( )m m
C

dz dzI
z z z z

  
 

 

 On 0, iz z e id    , 

1 ( 1)2 2
0 0

2 , 1
0 , 1

i
m i mx x

m im
i if me idI i e d

if me





   


    

      
 

Therefore,
0

0

0

0,
0, , 1
2 , 1.

if z z is outsideC
I if z z is insideC m

i if z z is insideC m


  
  

 

2.1.24 Example: Evaluate 2( 16)

z

c

e dz
z z




, where C is a closed contour between the circles of radius 1 

and 3, centred at origin. 
Solution: The integrand is analytic except at z = 0, z = + 4 which are not points of the given region. 
Therefore, by Cauchy’s theorem, the integral vanishes. 
2.1.25 Example: Using Cauchy`s Integral formula show that 

 
2 2

4
8

3( 1)

z

C

e edz i
z

 



, where C is the circle |z| = 3. 

Solution: By Cauchy’s integral formula for derivatives, we have 

0 1
0

( )( )
2 ( )

n
n

C

n f z dzf z
i z z 

 


 

C 

 z0 
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where f(z) is analytic inside and on C. 

In the present case, C is |z| = 3,  

f(z) = e2z, z0 = 1, n = 3 and f(z) is analytic inside and on the circle |z| =3. 

Also, f 3(1) = 8e2.Therefore, (1) becomes 
2

2
4

38
2 ( 1)

z

C

ee dz
i z

  


 

2 2

4
8

3( 1)

z

C

e edz i
z

 
 


 

Hence the result. 

2.1.26 Example: Using Cauchy Integral formula, find the value of the integral 

 
( )C

dz
z z i

  
where C is a circle given by 3 4z i  . 

Solution: By using partial fraction, we have 

   1 1 1( )
( )C C

dz dz
z z i i z z i  

  
 

 

    
1

( )C C

dz dz
i z z i 

  


 

    1 2
1 ( )I I
i

          (*) 

Now, 1
C

dzI
z

  . Here ( ) 1, 0f z a  . 

By using Cauchy integral formula,    1
2 C

f z
d

i
af z

z a
 


;   10 1

2 C
f dz

i z
   

 111
2 C

dz
i z

  
1 2

C
dz

z
i   

Now,I2 = 
( )C

dz
z i


here ( ) 1, .f z a i    

By using Cauchy integral formula,   11
2 C

f dz
i z i

i
 

 


  

 1 11
2 C

dz
i z i 

 


 2 1

C
i dz

z i



 


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Putting the value of I1 and I2 in (*), we get 

 1 (2 2 ) 0.
( )C

dz i i dz
z z i i

 
 

   


 

2.1.27 Exercise: Using Cauchy’s Integral formula, prove that 

2 2sin cos( ) 4( 1)( 2)
z zi dz i

z zC

  
  

, where C is the circle |z|=3 

6sin 21( ) 3 16( / 6)
zii dz i

zC






, where C is the circle |z|=1. 

cos( ) ( 4) 2
z iiii dz

z zC

 
, where C is the circle |z|=1. 

1( ) (sin cos )2 2 2( 1)

zteiv dz t t t
zC

 


, where t > 0 and C is the circle |z|=3. 

2.1.28 A Complex Integral as a Function of its Upper Limit: Let f(z) be analytic in a region D and let
 

0
( ) ( )z

zF z f w dw   

where z0 is any fixed point in D and the path of integration is any contour from z0to z lying entirely in D. 
It follows from Cor. (2.1.15) to Cauchy’s theorem that the value of F(z) depends on z only and not on 
the particular path of integration from z0to z. F(z) is called the indefinite integral of f(z). We prove 
below the analogue, in the theory of functions of a complex variable, of the well known “fundamental 
theorem of integral calculus”. It asserts that the operations of integration and differentiation are inverse 
operations. 
2.1.29 Theorem: The function F(z) is analytic in D and its derivative is f(z). 

Proof: Since
0

( ) ( )z
zF z f w dw   

and 
0

( ) ( )z h
zF z h f w dw    

Thus,    
0 0

( ) ( ) ( ) ( )z h z
z zF z h F z f w dw f w dw      

   0

0
( ) ( )z z h

z zf w dw f w dw    

( )z h
z f w dw   

Hence, 
    1 ( )z h

z
F z h F z

f w dw
h h

 
  . 

By Cauchy’s theorem, we may suppose that integral is taken along the straight line from z to z+h. Thus 
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      1 1( ) ( )z h z h
z z

F z h F z
f z f w dw f z dw

h h h
  

   
 

    1 [ ( ) ( ) ]z h
z f w f z dw

h
   

Since f(z) is analytic so it is continuous, given 0 , there exists a 0  such that 

   f w f z  whenever w z   . 

Therefore, if 0 h   , we have 

      1 ( ) ( )z h
z

F z h F z
f z f w f z dw

h h
 

    

    11 z h
z h

dw h
h

      

Hence,      
0

lim 0
h

F z h F z
f z

h

 
   

or  '( ) ( )F z f z  

which proves that F(z) is analytic and that its derivative is f(z). 
2.1.30 Morera’s Theorem (Converse of Cauchy’s Theorem): If f(z) is continuous in a region D and if 
the integral f(z)dz taken round any closed contour in D vanishes, then f(z) is analytic in D. 

Proof:When the integral round a closed contour vanishes, then we know that the value of the integral 

0
( ) ( )z

zF z f w dw 
 is independent of path of integration joining z0and z. Also, we have 

( ) ( ) 1 ( )
z h

z

F z h F z f w dw
h h

 
 

 

and further 

( ) ( ) 1( ) [ ( ) ( )]
z h

z

F z h F z f z f w f z dw
h h

 
    

where we are free to assume that the path of integration is the straight line joining the points z and z+h. 
Since f(z) is continuous in D, we find that (previous theorem 2.1.29) 

'( ) ( )F z f z  

i.e. F(z) is analytic with derivative f(z). But we have the result that derivative of an analytic function is 
analytic. Thus, we finally conclude that '( )F z  i.e. f(z) is analytic in D. 

2.1.31 Example: Find the value of the integral 2( )x y ix dz    
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Figure 10 

(i) along the straight line from z = 0 to z = 1+i 
(ii) along the real axis from z = 0 to z = 1 and then along a line parallel to imaginary axis from 

z = 1 to z = 1+i. 

Solution: Let z x iy  dz dx idy    

(i) OA is the straight line joining z = 0 to z = 1+i. 
Clearly y = x on A 

dy dx   

12 2( ) ( )( )
0

x y ix dz x x ix dx idx
OA

        

1 (1 ) ( 1)2(1 ) .
3 30

i i ii i x dx  
     

(ii) The real axis from z = 0 to z = 1 is the line OB and y = 0 on OB. 
 Therefore, z = x,dz = dx 

1 12 2 2( ) ( 0 ) ( )
0 0

x y ix dz x ix dx x ix dx
OB

        
1
2 3

i
   

Now, BA is the line parallel to the imaginary axis from z = 1 to z = 1+i and x = 1 on BA so  
that dx = 0, dz = idy 

1 12( ) (1 ) [(1 ) ] 1
2 20

ix y ix dz y i idy i i
BA

            . 

2.1.32 Cauchy’s Inequality (Cauchy’s Estimate): If f(z) is analytic within and on a circle C given by 

0z z R  and if ( )f z M for every z on C, then 0( ) .n
n

M nf z
R

  

Proof: Since f(z) is analytic inside C, we have by Cauchy’s integral formula for nth derivative of an 
analytic function 

0 1
0

( )( ) .
2 ( )

n
c n

n f zf z dz
i z z 

 
  

Since on the circle 0 ,z z R  0 Re , Rei iz z dz id     and the length of the circle is 2 R , 
therefore 

0 1
0

( )( )
2 ( )

n
C n

n f z dzf z
z z  


 

B (z = 1) 

A [z = (1+i)] 

X  

Y  

O
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1
0

( )
2 C n

f z dzn

z z  


 

2 2
0 01

Re

2 2Re

i

n ni

M idn n M d
R


 






 
    

2
2 n n
n M M n

R R



   

Hence, 0( ) .n
n

M nf z
R

  

2.1.33 Liouville’s Theorem: A function which is analytic in all finite regions of the complex plane, and 
is bounded, is identically equal to a constant .i.e. the only bounded entire functions are the constant 
functions. 
Proof: Let z1, z2be arbitrary distinct points in z-plane and let C be a large circle with centre at origin and 
radius R such that C enclosesz1 andz2i.e. 1 2, .z R z R   

Since f(z) is bounded, there exists a positive number M such that ( ) .f z M z   

By Cauchy’s integral formula, 

1

( )1
1 2( ) f z dz

i z z
C

f z  
   

2

( )1
2 2( ) f z dz

i z z
C

f z     

2 1

2 1

( )( )1
2 1 2 ( )( )( ) ( ) f z z z

i z z z z
C

f z f z dz


     

Thus,  2 1

1 2

( )
2 1 2( ) ( ) z z f z dz

z z z zC
f z f z 


 

    

    2 1

1 22
M z z dz

z z z zC



 
   

2 1

1 2
1 12 ( ) ( )

M z z dz
z z z zC

z z z z



 
      

Now, on the circle C, Re , ,iz z R  Reidz id     

Therefore, 2 1

1 2

Re2
2 1 02 ( )( )

( ) ( )
i idM z z x

R z R z
f z f z

 



 
    
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2 1

1 22 ( )( )
2M z z R

R z R z 


 
  

2 1

1 21 1

1M z z
z z
R R

R


  
   

  

  

which tends to zero as R → ∞. Hence,  2 1( ) 0f z f z  i.e.    1 2f z f z . But z1, z2 are arbitrary, this 
holds for all couples of points z1, z2 in the z-plane, therefore f(z)=constant. 
2.1.34 Taylor’s Series: We have observed that a convergent complex power series defines an analytic 
(holomorphic) function. Here, we discuss its converse i.e. we proceed to prove that if f(z) is an analytic 
function, regular in a neighbourhood of the point z = a, it can be expanded in a series of powers of  
(z a). These two results combine to demonstrate that a function is analytic in a region iff it is locally 
representable by power series. The following theorem extends Taylor’s classical theorem in real analysis 
to analytic functions of a complex variable. 
2.1.35 Taylor’s Theorem: Suppose that f(z) is analytic inside and on a closed contour C and let a be a 
point inside C. Then 

   

2

1

''( ) ( )( ) ( ) '( )( ) ( ) ........... ( )
2

( )( ) ( )

n
n

n
n

n

f a f af z f a f a z a z a z a
n

f af a z a
n





       

  

 

The infinite series is convergent if z a   where   is the distance from a to the nearest point ofC. In 

the region 1z a    where 1 ,  the series is uniformly covergent. 

Proof: Let 1
2 1 20 .

2
sothat    

     Then, by hypothesis, f(z) is analytic within and on the 

circle defined by the equation 2.z a    Let a + h be any point of the region defined by 1.z a    

 
    Figure 11 

Since a + h lies within the circle , using Cauchy`s integral formula 

                                                           C 

  
 



2 

a     1 
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1 ( )( )
2

f zf a h dz
i z a h

  
 

 

1 1( )
2 ( ) 1

f z dz
hi z a

z a


 
    

1 ( ) 1
2 1

f z dzhi z a
z a



 
 

     
 

 

2 1

2
1 ( ) 1 ......

2 ( ) ( ) ( ) ( )

n n

n n
f z h h h h dz

i z a z a z a z a z a z a h

 
     

        
 

1
21 1 ....

1 1

n
n bb b b

b b

 
         

  

 

   

     

2

2 3

1

1 1

1 ( ) ( ) ( )
2 2 2

( ) ( )....
2 2

n n

n n

f z h f z h f zdz dz dz
i z a i iz a z a

h f z h f z dzdz
i iz a z a z a h

  

 

  

 



 

    
  

   
   

 

Using Cauchy’s integral formulae for the derivatives of an analytic function, we get  
2

( ) ( ) '( ) ''( ) ..... ( )
2

n
n

n
h hf a h f a h f a f a f a

n
         

where
   

1

1
( )

2

n
n n

h f z dz
i z a z a h




  

  
. 

Thus,      
1

rn r
n

r

hf a h f a f a
r

      

But on account of continuity, f(z) is bounded on the circle . Thus there exists a positive constant M such 
that ( )f z M on  . Also, when 

2
,z a    

2 1z a h z a h          

where a+h lies in the circle and 1 ,z a    implies 1 1. . .a h a i e h      

Now, applying the result regarding the absolute value of a complex integral we have the inequality 
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1

1
( )1

2

n

n n
f z h dz

i z a z a h



  
  

 

   
 

1

1
2 2 12

n

n
h dzM

   




 


 

   
 

1

21
2 2 1

2
2

n

n
M h


  






  2 1 2

nM h h
  

 
      

Since  1 2,h     it follows that as , 0nn    

So that we have the identity 

   
1

( )( ) ( )
n

n

n

f af a h f a h
n




     

Changing over from a + h to z, thus we have the so called Taylor’s series (expansion) 

    
1

( )( ) ( )
n n

n

f af z f a z a
n




    

So far, we have proved only the convergence of this series for all values of z such that 1,z a    

It is however possible to prove more i.e. the uniform convergence as follows. Since 1,h  we have 

   1 1

1 2 2

n

n
M 
  

 
     

 

and we observe that the expression on the right is independent of h. Therefore, given >0, there exists 
an integer N = N(), independent of h, such that |n| < for n N. This proves the uniform convergence 
of the Taylor`s series of f(z) in the region |z  a| 1<
2.1.36 Remarks: 

(i) The above theorem is sometimes known as the Cauchy-Taylor theorem. 
(ii) By putting a = 0, Taylor’s expansion reduces to 

     
1

0
0

n
n

n

f
f z f z

n



   , which is known as Maclaurin’s series. 

(iii) Taylor`s series can be put as 

     
0

n
n

n
f z a z a




   

where 
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 
  1

1 ( ).
2

n

n n
f z n f za dz

n n i z a 
  

  

  1
1 ( ) .

2 n
f z dz

i z a 
 


 

(iv) Using   ,
n

n
f a

a
n

 the result of Cauchy ' s inequality (2.1.31) can be put as 

  

 n

n n n
f a M n Ma

n n R R
  

 

. . n n
Mi e a
R

 . 

2.1.37Theorem: On the circumference of the circle of convergence of a power series, there must be at 
least one singular point of the function represented by the series. 

Proof: Suppose that there is no singularity on the circumference |z  a| = R of the radius of convergence 
of the power series. 

   
0

n
n

n
f z a z a




   

Then, the function f(z) will be regular in a disc |za| < R + , where  is sufficiently small positive 

number. But from this it follows that the series  
0

n
n

n
a z a




 must converge in the disc |z a| < R + 

and this contradicts the assumption that |z a| < R is the circle of convergence.  

Hence, there is at least one singular point of the function    
0

n
n

n
f z a z a




  on the circle of 

convergence of the power series  
0

n
n

n
a z a




 . 

2.1.38 Example: Expand the following functions in a Taylor’s series about point z = 0 and determine 
the region of convergence   

(i) ze      (ii)  sin z     (iii) cos z  

Solution: (i)Let ( ) zf z e , 

 '( ) zf z e ,………, ( )( )r zf z e  

  ( )(0) 1, '(0) 1,...., (0) 1rf f f     
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By Taylor’s series, we have 

 
2

( )( ) (0) '(0) ''(0) .... (0) .......
2! !

r
z rz zf z e f zf f f

r
        

   
2

1 .... .......
2! !

rz zz
r

       

Here,
1

1,
! ( 1)!

r r
r r

z zu u
r r



 


 

 
1

1lim lim ( 1) .r
r rr

u r
u z 

     

By ratio test, the series is convergent. 

(ii) Let ( ) sinf z z  

'( ) cos sin( )
2

f z z z
    

  ''( ) sin sin( )f z z z      

   ……………………… 

         ……………………… 

  ( ) ( ) sin( )
2

r rf z z
   

 (0) 0, '(0) 1, ''(0) 0........f f f     

By Taylor’s series, we have 

  
2

( )( ) sin (0) '(0) ''(0) .... (0) .......
2! !

r
rz zf z z f zf f f

r
        

   
2 3

0 (0) ( 1).... ( 1) .......
2! 3! !

r
rz z zz

r
       

3 5
......

3! 5!
z zz     

 Here, 
2 1 2 1

1,
(2 1)! (2 1)!

r r
r r

z zu u
r r

 

 
 

 

21

1lim lim (2 1)(2 ) .r
r rr

u r r
u z 

     

 So, series is convergent everywhere. 

(iii) Let ( ) cosf z z  
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'( ) sin cos( )
2

f z z z
     

''( ) cos cos( )f z z z      

       ……………………… 

( ) ( ) cos( )
2

r rf z z
   

 By Taylor’s series, we have 

   
2 4

( ) cos 1 ......
2! 4!
z zf z z      

 Here,     
2 2 2

1,
(2 2)! (2 )!

r r
r r

z zu u
r r



 


 

   21

1lim lim (2 1)(2 ) 1r
r rr

u r r
u z 

      

 So, series is convergent everywhere. 

2.1.39 Example: Expand log (1 + z) in a Taylor’s series about the point z = 0 and determine the region 
of convergence for the resulting series. 

Solution: Let    log 1f z z  .Then 

     
 2

1 1, '
1 1

f z f z
z z

  
 

 

  ………………………………………. 
  ………………………………………. 

   
 

11 1

1

n
n

n
n

f z
z

 



 

Hence,      0 0, ' 0 1, '' 0 1f f f     

      10 1 1nnf n    

Therefore, by Taylor’s theorem, 

            
2

log 1 0 ' 0 '' 0 ... 0 ...
2

n
nz zf z z f zf f f

n
         

    
2 10 1 ... 1 1 ......
2

n nz zz n
n

          
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  
2 3 1..... 1 .....
2 3

nnz z zz
n

       

Now, if un denotes the nth term of the series, then 

   1 1

1
1 1

,
1

n nn n

n n
z z

u u
n n

 


 

 


 

1

1lim n
x n

u
u z 

   

Hence, by ratio test, the series converges for 1 1
z
  i.e. 1z  . 

2.1.40 Example: If the function f(z) is analytic when |z| < Rand has the Taylor’s expansion 
0

,n
n

n
a z






 
show that if r<R, 

     2 2 22
0

0

1
2

i n
n

n
f re d a r 






   

Hence, prove that if  f z M when ,z R
2

2 2

0

n
n

n
a r M




 . 

Solution: Since f(z) is analytic for |z| < R, so f(z) is analytic within and on a closed contour C defined 
by |z| = r, r < R. Thus f(z) can be expanded in a Taylor’s series within |z| = r so that 

 
0

n
nf z a z


   

  
0

,n in i
na r e z re 

   

      2

0 0

n in m im
n m

n m
f z f z f z a r e a r e   

 
     

  
0 0

i n mm n
n m

n m
a a r e    

 
    

The two series for f(z) and  f z are absolutely convergent and hence their product is uniformly 

convergent for the range 0  0  2. Thus, the term by term integration is justified. So, we get 

     22 2
0 0

0 0

i n mm n
n m

n m
f z d a a r e d  

  

 
     
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     
0

0

0,
.2 ,

2 ,
i n mn n

n n
n

n m
a a r e d

n m
 



  




    

 

or  
2 2 22

0
0

1 ( )
2

i n
n

n
f re d a r 






        (1) 

Now, from (1), we get 

  22 2 2
0

0

1
2

n i
n

n
a r f re d 



 


   

22
0

1
2

M d


  2 21 2
2

M M


  . 

Which proves the required result. 

2.1.41Example: If a function f(z) is analytic for all finite values of z and as |z|, |f(z)| = A|z|K, then 
f(z) is a polynomial of degree K. 

Solution: Here, f(z) is analytic in the finite part of z-plane. Also, it is given that 

 lim K
z

f z A z


           (1) 

We can assume that f(z) is analytic inside a circle C defined by |z|=R, where R is large but finite. Hence 
f(z) can be expanded in a Taylor’s series as 

  
0

n
nf z a z


 , where    

  1
0

2 0
n n

C

f f zna dz
n n i z   



 
1

1
2 n

C

f z
dz

i z 
   

Therefore, 
   1 1

1 1
2 2

n n n
C C

f z dz
a f z dz

i Rz  
    

      1 , max . .
2 n

C

M dz M f z onC
R 

   

     
1 2

2

K

n n n
A zM MR

R R R


 
    

K

n n K
AR A
R R 

  . 

Thus, K n
n n K

Aa AR
R




   

which tends to zero as R → ∞, if n – K > 0 i.e. an = 0 for all n such that n > K. Now, from (2), we 
conclude that f(z) is a polynomial of degree ≤ K. Hence the result. 



 

SSEECCTTIIOONN--IIIIII  

3.1 Laurent’s Series:  Consider the functions which are analytic in a punctured disc i.e. an open disc 
with centre removed. We have seen that a function  f z which is regular in an open disc at z = a, can 
be expanded in a Taylor’s series in powers of (z a) and that this power series is convergent in any 
circular region with centre ‘a’, contained within the given neighbourhood. 

In case, however, the function is not analytic in the neighbourhood of a point ‘a’ including it, but 
analytic only in a ring shaped region (sometimes called annulus) surrounding ‘a’, the expansion of 
 f z in a Taylor’s series in powers of (z   a) ceases to be valid. The question naturally arises as to 

whether  f z , for values of z in the above said ring shaped region, can be expanded in powers of (z  a) 
or not. In such a situation  f z  has another series expansion known as Laurents’s expansion. 

3.1.1 Definition:  Circles lying in the same plane and having a common centre is called concentric 
circles and the region between two concentric circles is called an annulus. 

3.1.2 Definition (Weierstrass’s M-test):  Suppose ( )nu z  is an infinite series of single valued 
functions defined in a bounded closed domain D. Let there exist a series nM of positive constants 
independent of z such that 

(i) ( )n nu z M n  and z D   

(ii) nM is convergent 

Then, the series ( )nu z  is uniformly and absolutely convergent in the domain D. 

3.1.3 Laurent’s Theorem: Let  f z be analytic in the ring shaped region between two concentric 
circles C and 'C of radii R and  R' 'R R with centre ‘a’, and on the circles themselves, then  

0 1
( ) ( ) ( ) ,n n

n n
n n

f z a z a b z a
 



 
      

z being any point of the annulus and                                      

1

1
'

1 ( ) ,
2 ( )
1 ( ) .

2 ( )

n n
C

n n
C

f wa dw
i w a

f wb dw
i w a







 

 


 


 

Proof: Since  f z is analytic on the circles and within the annulus between two circles. So by 

Cauchy’s integral formula, we have 

'

1 ( ) 1 ( )( )
2 2C C

f w f wf z dw dw
i w z i w z 

  
 

 .              (1) 

Consider the identity 
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1 1 1
( ) ( ) ( ) 1 z aw z w a z a w a

w a

 
        

     (2) 

Applying the result, 
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on R.H.S. of (2), we obtain 
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nrn

r
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z aw z w a w a w a
w a

z a z a
w a w a w z
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 
                  

 

        

   (3) 

Interchanging z and w, we get 
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1 ( ) ( ) 1
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r nn

r nr

w a w a
z w z a z a z w






 
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   
        (4) 

Equations (3) and (4) can be written as 

1

10

( ) ( ) ( )( )
( )

nrn

rr

f w z a z a f wf w w on C
w z w a w a w z






          
      (5) 

1

10
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nrn

rr

f w f w w a w a f wf w w on C
z w w z z a z a z w




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             
  (6)  

Let M and 'M  be the maximum values of | f (w)| on C and 'C  respectively. Also let 1z a r   . 
Equations of circles C and 'C  are w a R    and 'w a R   respectively. 

From the figure, it is clear that 

1

1

' 1 '

1

w a R if w lies on C
z a r

rz a if w lies on C
w a R


   


    

          (7) 

The absolute value | un(z) | of general term of the series in (5) is 

1

1 1
1

( )( ) ( )
( )

n

n n

nn

n

z au z f w
w a

r rMM
R R R










    
 

 

 

  
  

R 

 

r 

R C 

1 
z 
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Similarly, the absolute value  'nu z  of general term of the series (6) is 

1
1 1 1

( ') ' ''( ) '
nn

n n

R M Ru z M
r r r

 
   

 
 

Hence, the series of positive terms 

1

1 1

' '
nnrM M Rand

R R r r
  

    
   

are both convergent as 1

1

'1, 1.r R
R r
   

Consequently by Weierstrass M-test, both the series in (5) and (6) are uniformly convergent. Hence term 
by term integration is valid. Integrating (5) and (6), we obtain 

1

10

1 ( ) ( ) ( ) ( ) ( )
2 2 ( ) 2 ( ) ( )

r nn

r n
rC C C

f w z a f w z a f wdw dw dw
i w z i w a i w a w z  






 
   

   
 

and 
11

0' ' '

1 ( ) ( ) 1 ( )( )( ) ( )
2 2 ( ) 2

r nn
r

nrC C C

f w z a w adw f w w a dw f w dw
i w z i z a i z w  

 



 
     

  
. 

Taking   

1

1

1 ( )
2 ( )

1 ( ) ( )
2

r r
C

r
r

C

f wa
i w a

b w a f w
i









 


 

 

and  

'

1 ( ) ,
2

1 ( ) .
2

n

n
C

n

n
C

z a f wU dw
i w a w z

w a f wV dw
i z a z w





      

      

 

We get 

 
1

0

1 ( ) ( )
2

n
r

r n
rC

f w dw z a a U
i w z




  


  (8) 

1
1

10'

1 ( )
2 ( )

n
r

nrrC

bf w dw V
i w z z a







  
 

       (9) 

Adding (8) and (9) and using (1), we get 

 

1

0 1
( ) ( ) ( )

n n
r r

r r n n
r r

f z a z a b z a U V




 
               (10) 

Now, 
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 1

1
1

1 ( )
2

1 ( ) ( )
2

n

n
C

n

C

z a f wU dw
i w a w z

M dwr w z w a z a w a z a R r
R R r





      

                

 

 

1

1

1

1

1 2
2

,
1

n

n

r M R
R R r

rM
r R
R



     

   
 

 

which tends to zero as n  , since 1 1r
R
  . Thus, lim 0nn

U


 . Similarly, we can get lim 0.nn
V


  

Making n   in (10), we obtain 

 
0 1

( ) ( ) ( )r r
r r

r r
f z a z a b z a

 


 
      

or 

 0 1
( ) ( ) ( )n n

n n
n n

f z a z a b z a
 



 
                (11) 

where  

1

1
'

1 ( ) ,
2 ( )
1 ( )

2 ( )

n n
C

n n
C

f wa dw
i w a

f wb dw
i w a







 

 


 


 

which proves the theorem. 
3.1.4 Remarks: 

(i) The result (11)  can  be  put  in  a  more  compact  form as   ( ) ( )n
n

n
f z a z a




   , where  the 

co-efficients are given by the single formula  1

1 ( )
2 ( )n n

f wa dw
i w a 

 


where   denotes C when  

0n     and    'C  when   n < 0    since   however    the   integrand   is   analytic   in    the 
annulus 'R z a R   , we may take   to be any closed contour which passes round the ring.  

(ii) The function ( )f z   which is expanded   in Laurent’s series is   one-valued. Laurent’s theorem 
will not provide an expansion for multi-valued function. 

(iii)In the particular case, when ( )f z is analytic inside 'C , all the coefficients bn are zero, by 
Cauchy’s theorem, and the series reduces to Taylor’s series. 

(iv) The  series  of  positive  powers of  z  a  converges,  not  merely  in  the  ring,  but  everywhere 
inside  the  circle  C. Similarly,  the  series  of  negative  powers  of  z  a  converges  
everywhere  outside 'C . 
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(v) The series of negative powers of z a i.e., 
1

( ) n
n

n
b z a





  is called the principal part of Laurent’s 

expansion, while the series of positive powers i.e. 
0

( )n
n

n
a z a




  is called the regular part. 

(vi) There is no handy method, like that for Taylor’s series, for finding the Laurent coefficients. But  
if  we  can  find  them  by  any  method  (generally by direct expansion),  their validity is 
justified due to the fact that Laurent’s co-efficients are unique. 

3.1.5 Example: Expand 1( )
( 1)( 3)

f z
z z


 

 in a Laurent’s series valid for the regions. 

 (i) 1z     (ii)  1 3z    (iii)   3z    (iv)  0 1 2z    

Solution: Resolving into partial fractions, we get 
1 1 1( )

( 1)( 3) 2( 1) 2( 3)
f z

z z z z
  

   
 

    (i) For 1z   , we have 

1 1

1
1

2 3
2 3

2

1 1( ) ( 1) ( 3)
2 2
1 1( 1) 1
2 6 3

1 1[1 ...] 1 ...
2 6 3 3 3

1 4 13
3 9 27

f z z z

zz

z z zz z z

z z

 





   

     
 

                 
     

  

 

 (ii) For 1z   , we have 
1

2 3

1 1 1 1 1 1 11 1 ...
2( 1) 2 2z z z z z z z


                

 

2 3 4

1 1 1 1 ...
2 2 2 2z z z z

      

3,and for z we have  
1

2 3

1 1 1 1
2( 3) 6 36 1

3
1 ...
6 18 54 162

z
zz

z z z


         

 

    

 

Hence, the Laurent’s series for f (z), valid for the annulus1 3z  , is  
2 3

4 3 2

1 1 1 1 1( ) ... ...
2 2 2 2 6 18 54 162

z z zf z
z z z z

           
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(iii) For 3z  , we have 

 1 1

2 3 4

1 1( )
2( 1) 2( 3)

1 1 1 3 1 4 131 1 ...
2 2

f z
z z

z z z z z z z

 

 
 

            
   

 

(iv) Take z + 1 = u, then 0 2u   and we have 

1

2

2

1 1( )
( 1)( 3) ( 2)

1 1 1
2 22 1

2
1 1 ...

2 4 8 16
1 1 1 ( 1) ...

2( 1) 4 8 16

f z
z z u u

u
u uu

u u
u

z z
z



 
  

        
 

    

 
    

  

3.1.6 Example: By considering the Laurent’s series for the function 1( )
(1 )( 2)

f z
z z


 

 . Prove   that  

(i) If C is any closed contour within annulus 1 2z   , then ( ) 2
C

f z dz i  . 

(ii) If C is any closed contour which contains both the points 1z   and 2z   in its interior, then 

( ) 0
C

f z dz   .  

Solution: Resolving ( )f z  into partial fractions, we get 

1 1 1( )
(1 )( 2) 1 2

f z
z z z z

  
   

 

(i) In the annulus 1 2z   , 1 1
z
   and 1

2
z
  , so that 

1 1

1 1 1 1( )
11 2 1 2 1

2

1 1 11 1
2 2

f z
zz z z

z

z
z z

 

   
         

   

         
   

 

2

2 1 10 0

1 1 1 1 11 ... 1 ...
2 2 2 2

n

n nn n

z z z
z z z z

 

 
 

                         



82 Section–III 

Now, in the region 1 2z  , the function ( )f z  is analytic and has the Laurent’s expansion 

10 1

1( )
2

n

n nn n

zf z
z

 


 

             (1) 

If we write this as ( ) n
n

n
f z a z




   , then ( 1)1 ( ) , 0, 1, 2........

2
n

n
C

a f z z dz n
i

        (2) 

where C is any closed contour within the annulus 1 2z  . Since, in the expansion (1), the coefficient 
of 1z   is 1, so we get from (2),  

( ) 2
C

f z dz i  . [By equating coefficients of 1z   in  (1) and (2)]. 

(ii) In the domain 2z   , 1 1
z
   and 2 1

z
  , so that Laurent’s series is 

1 1

2

2

1 1 1 1 1( )
1 2(1 )( 2) 1 2 1 1

1 1 1 21 1

1 1 1 1 2 21 ........ 1 ........

f z
z z z z z z

z z

z z z z

z z z z z z

 

    
           

   

         
   

                    

 

10

1 2 , 2
n

nn
z

z






       (3) 

Since the coefficient of 1z   in this expansion is 0, therefore from (2) and (3), we get  

( ) 0f z dz


  , 

where   is any closed contour in the region 2z  . Since ( )f z  is analytic except at points 1z   and 
2z  , it follows by well-known result on complex integration that  

( )dz ( ) 0
c

f z f z dz


   , 

where C is any simple closed that contains both the points 1z  and 2z  in its interior.  

3.1.7 Example: For the function
3

2

2 1( ) zf z
z z





 , find the Taylor’s series valid in the neighbourhood of 

the point z i  and a Laurent’s series valid within the annulus with centre at the origin. 

Solution.   Here,  
3

2

2 1 1 1( ) 2( 1)
1

zf z z
z z z z


    

 
       (1) 

To find the Taylor’s expansion in the neighbourhood of point z i  for the function ( )f z , let us take  

( ) ( ) ( ) ( )f z g z z z    ,          (2) 
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where 1 1( ) 2( 1), ( ) , ( )
1

g z z z z
z z

    


 . 

(i)Taylor’s expansion for ( )g z  is  

0
( ) ( ) ,n

n
n

g z a z i



   where 

( ) ( )
!

n

n

g ia
n

  . 

Here, 

( ) ( )

( ) 2( 1), ( ) 2( 1)
'( ) 2, '( ) 2

( ) 0 2, ( ) 0 2n n

g z z g i i
g z g i
g z n g i n

    
 

     

 

0 12( 1), 2, 0 2na i a a n        

( ) 2( 1) 2( )g z i z i               (3) 

(ii) Taylor’s expansion for 1( )z
z

  is  

0
( ) ( ) ,n

n
n

z a z i



   where 

( ) ( )
!

n

n

ia
n


  . 

 Here   

2 2

( ) ( )
1 1

1 1( ) , ( )

1 1'( ) , '( )
( )

( 1) ! ( 1) !( ) , ( )
( )

n n
n n

n n

z i
z i

z i
z i

n nz i
z i

 

 

 
 

  

   

 
 

 

Therefore, 1

( 1)
( )

n

n n
a

i 


  

Hence, 10

( 1) ( )( )
( )

n n

nn

z iz
i







 
         (4) 

(iii) Taylor’s expansion for ( )z  is  

0
( ) ( ) ,n

n
n

z a z i



   where 

( ) ( )
!

n

n

ia
n


  . 

 Here, 
1 1( ) , ( )

1 1
z i

z i
   

   
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2 2

( ) ( )
1 1

1 1'( ) , '( )
( 1) ( 1)
( 1) ! ( 1) !( ) , ( )
( 1) ( 1)

n n
n n

n n

z i
z i

n nz i
z i

 

 
 

   
 

 
 

 

 

1

( 1)
( 1)

n

n n
a

i 


 


 

10

( 1) ( )( )
( 1)

n n

nn

z iz
i







 
  


            (5) 

Now, writing equation (2) with the help of (3), (4) and (5), we obtain the required Taylor’s expansion of 
( )f z  as 

1 10

1 1( ) 2( 1) 2( ) ( 1) ( )
( 1)

n n
n n

n
f z i z i z i

i i


 


 
          

  

Laurent’s expansion for ( )f z  in the annulus 0 1z   is  

1

0

1( ) 2( 1) (1 )

12( 1) ( 1) .n n

n

f z z z
z

z z
z







    

    
 

3.1.8 Example:  Show that   
1

2
c z

nz
n

n
e a z

   
 


 

2

0

1 cos( sin )
2nwhere a n c d



  


   . 

Solution: The function 
1

2( )
c z

zf z e
  
    is analytic except at z = 0 and z =   . Hence ( )f z is analytic in 

the annulus 1 2r z r   , where r1 is small and r2 is large. Therefore, ( )f z  can be expanded in the 
Laurent’s series in the form 

0 1
( ) n n

n n
n n

f z a z b z
 



 
              (1) 

where 1
'

1 ( ) ,
2n n

C

f za dz
i z 

   

1
'

1 ( ) ,
2n n

C

f zb dz
i z  

 

 'C  being any circle with centre at the origin for the sake of convenience, let us take 'C to be the unit 
circle |z| = 1 which gives iz e  . Now, 
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12

1
'

sin2

( 1)
0

2
( sin )

0

1 ( ) ,
2

1
2
1

2

c

n n
C

ci i

i n

i c n

e z za dz
i z

e ie d
i e

e d

 




 


















 

 

 

 

2 2

0 0

1 cos( sin ) ( ) ,
2 2

ic n d F d
 

    
 

           (2) 

where   ( ) sin sinF c n    .Since  

2

0

(2 ) sin[ sin(2 ) (2 )]
sin( sin 2 )
sin( sin ) ( )

( ) 0

F c n
c n n
c n F

F d


     
  
  

 

    
   
    

 

 

Thus, from (2), we have 
2 2

0 0

1 1cos( sin ) cos( sin )
2 2na c n d n c d

 

     
 

     . 

We note that if z is replaced by 1z  , the function ( )f z  remains unaltered so that bn = (-1)n an 

Hence, from (1), we get 

0 1
( ) ( 1)

.

n n n
n n

n n

n
n

n

f z a z a z

a z

 


 





   

 
 

Where,
2

0

1 cos( sin )
2na n c d



  


   . 

3.1.9 Example:  Prove that the function ( )f z = cosh(z + z -1) can be expanded in a series of the type 

0 1
( ) n n

n n
n n

f z a z b z
 



 
   in which the co-efficients of  nz and nz   , both are given by  

2

0

1 cos cosh(2cos ) .
2

n d


  
   

Solution:  The function ( )f z = cosh (z + z -1) is analytic except at z = 0 and z =  . Hence ( )f z  is 
analytic in the annulus 1 2r z r   , where r1 is small and r2 is large. Therefore, ( )f z  can be expanded in 
the Laurent’s seriesas 

0 1
( ) n n

n n
n n

f z a z b z
 



 
             (1) 

Where 
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1

1

1 ( ) ,
2
1 ( ) ,

2

n n
C

n n
C

f za dz
i z

f zb dz
i z







 

 

 

 

where C being any circle with centre at the origin. Let us take C to be the unit circle |z| = 1 which gives 
iz e . Now, 

2

1
0

2

( 1)
0

2

0

1 cosh( )
2
1 cosh(2cos )

2
1 cosh(2cos )

2

n n

i

i n

in

z za dz
i z

e id
e

e d











 



 









 

 

 

 

2 2

0 0

1 cosh(2cos )cos ( )
2 2

in d F d
 

    
 

       (2) 

where ( ) cosh(2cos )sinF n    

We note that  
2

0
(2 ) ( ) ( ) 0F F F d



          

Thus, (2) becomes 
2

0

1 cosh(2cos )cos
2na n d



  


   .        (3) 

It is clear that 
2

0

1 cosh(2cos )cos( )
2n n nb a n d a



  
    . 

Thus, from (1), we find 

1
0

0 1 1
cosh( ) ( )n n n n

n n n
n n n

z z a z a z a a z z
  

  

  
        , where anis given by (3). 

3.1.10 Example: Prove that the function  1( ) s   in  c zf z z     can be expanded in a series of the 

type 
0 1

( ) n n
n n

n n
f z a z b z

 


 
   in which the co-efficients of  nz and nz   , both are given by  

2

0

1 sin (2 cos )cos .
2

c n d


  
   

Solution: The function  is analytic except at points z = 0 and z =  . Hence, ( )f z  is analytic in the 
annulus 1 2r z r   , where r1 is small and r2 is large.  

Therefore, ( )f z  can be expanded in the Laurent’s seriesas 
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 1

0 1
( ) sin[ ( )] n n

n n
n n

f z c z z a z b z
 

 

 
             (1) 

where 
1

1 1

1

1 1

1 ( ) 1 sin[ ( )] ,
2 2
1 ( ) 1 sin[ ( )] ,

2 2

n n n
C C

n n n
C C

f z c z za dz dz
i z i z

f z c z zb dz dz
i z i z

 

 



 



   


  


  

 

and C being any circle with centre at the origin. We take C to be the unit circle |z| = 1 which gives 
i iz e dz ie d      . 

Therefore,    
2

( 1)
0

2

0

2

0

1 sin[ ( )]
2
1 sin[ ( )]

2 .
1 sin[ (2cos )]

2

i i
i

n i n

i i
i

in i

in

c e ea ie d
i e

c e e e d
e e

c e d

 




 


 










 











 


 

 

 

2 2

0 0

1 sin[ (2cos )]cos ( )
2 2

ic n d F d
 

    
 

          (2) 

where ( ) sin[ (2cos )]sinF c n    . 

We note that  

2

0

(2 ) ( )

( ) 0

F F

F d


  

 

  

 
 

Thus, (2) becomes 
2

0

1 sin[ (2cos )]cos
2na c n d



  


   .            (3) 

It is clear that 
2

0

1 sin[ (2cos )]cos( )
2n n nb a c n d a



  
    . Thus, from (1), we find 

1

0 1
sin[ ( )] n n

n n
n n

c z z a z b z
 

 

 
    , 

where 
2

0

1 sin (2 cos )cos( )
2n na b c n d



  


   . 

3.1.11 Example:  Find the Laurent series for  2( )
1

zf z
z




 around z0= i. Give the region where your 

answer is valid. 
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Solution: Using partial fractions, we have 

2

1 1 1( ) .
1 ( )( ) 2

z zf z
z z i z i z i z i

          
 

Since 1
z i

 is analytic at z = i, it has a Taylor series expansion. We find it using geometric series. 

 
0

1 1 1 1
2 2 21

2

n

n

z i
z iz i i i i

i





       
 

So, the Laurent series is 

 
0

1 1 1( )
2 4 2

n

n

z if z
z i i i





        
 

The region of convergence is 0 2.z i    

3.1.12 Exercise: 

1. Prove that 2 3
2 3 2

1 2 1 1 1 ..., 0 1.z z z z z
z z z z


       


 

2. Expand 2

1
( 3 2)z z z 

 for the regions 

(i) 0 1z    (ii)  1 2z     (iii) 2z   

3. Expand ( 2)( 2)
( 1)( 4)
z z
z z
 
 

 for the regions 

(i) 1z     (ii)  1 4z     (iii) 4z   

4. Expand 
2 1

( 2)( 3)
z

z z


 
 for the regions 

(i) 2z                 (ii)  2 3z                (iii) 3z   

5. Expand 2

1
(1 )z z

 for the regions 

(i) 0 1z      (ii) 1z   

6. Find the Laurent’s series of the function 2

1( )
(1 )

f z
z z




  about z = 0. 

7. Expand 2

1
(1 )( 2)z z 

 for the regions 

(i) 1z     (ii)  1 2z     (iii) 2z   
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8. Expand 2

3
( 2)

z
z z z


 

 for the regions 

(i) 1z     (ii)  1 2z     (iii) 2z   

3.2 Zeros of an analytic function: A zero of an analytic function  f z is the value of z such 
that   0.f z   Suppose  f z is analytic in a domain D and a is any point in D. Then, by Taylor’s 
theorem,  f z can be expanded about z = a in the form 

0
( ) ( )n

n
n

f z a z a



   , where ( )

!

n

n

f aa
n

        (1)  

Suppose  0 1 2 1  .   0,  0m ma a a a a           (2) 

so that      1(  '  ....... 0, 0) m mf a f a f a f a     

In this case, we say that  f z has a zero of order m at z = a and thus (1) takes the form 

0

0

( ) ( )

( )

( ) ( )

n
n

n m

n m
n m

n

m n
n m

n

f z a z a

a z a

z a a z a
















 

 

  

 

Let     
0

( ) ( )n
n m

n
a z a z






   .           (3) 

Therefore, we get  ( ) ( ) ( )mf z z a z            (4) 

Now,  

0

1

( ) ( )

( ) .

n
n m

n z a

n
m n m m

n z a

a a z a

a a z a a





 




 

    

      

 

Since 0, ( ) 0ma so a   . Thus, an analytic function  f z is said to have a zero of order m at   z = a if 
 f z is expressible as ( ) ( ) ( )mf z z a z  , where ( )z is analytic and ( ) 0a  . Also,  f z is said to 

have a simple zero at z = a if z = a is a zero of order one. 
3.2.1 Theorem:  Zeros are isolated points. 
Proof: Let us take the analytic function  f z which has a zero of order m at z = a. Then, by definition, 

( )f z  can be expressed as  

( ) ( ) ( )mf z z a z  , where ( )z is analytic and ( ) 0a  .  

Let (a) 2K  . Since ( )z  is analytic in sufficiently small neighbourhood of a, it follows from the 
continuity of ( )z in this neighbourhood that we can choose   so small that, for z a   , 
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( ) ( ) .z a K    

Hence,      

       
     

    

          
           2  
         

| |

| | |

 ,  

|

  

z a z a

a z a
K K

K for z a

  

 







  

  
 
  

 

Since 0K  thus, ( )z does not vanish in the region   z a   . Since ( ) ( ) ( )mf z z a z  , it follows at 
once that ( )f z  has no zero other than ‘a’ in the same region. Thus, we conclude that there exists a 
neighbourhood of ‘a’ in which the only zero of ( )f z is the point ‘a’ itself i.e. ‘a’ is an isolated zero. 

The above theorem can also be stated as, “Let ( )f z be analytic in a domain D, then unless 
( )f z is identically zero, there exists a neighbourhood of each point in D throughout which the function 

has no zero except possibly at the point itself.” 
3.3 Isolated Singularity: The point where the function ceases to be analytic is called the singularity of 
the function. Suppose that a function ( )f z is analytic throughout the neighbourhood of a point z=a, say 
for   z a    , except at the point a itself. Then the point ‘a’ is called an isolated singularity of the 
function ( )f z . In other words, the point z = a is said to be isolated singularity of ( )f z if ( )f z is not 
analytic at z =a and there exists a deleted neighbourhood of z = a containing no other singularity. 

For example, the function 1( )
( 1)( 2)( 3)

zf z
z z z




  
has three isolated singularities at z = 1,-2,-3 

respectively and the function 1( )f z
z

  is analytic everywhere except at origin. Therefore, z = 0 is an 

isolated singularity. 

3.3.1 Definition: Let z = a be an isolated singularity of the function ( )f z ,  then there exists a deleted 
neighbourhood of point z a  in which (z)f  is analytic. Thus, if z is any point in this neighbourhood, 
then by Laurent’s expansion (z)f  can be written as 

 0 1
( ) ( ) ( ) ,n n

n n
n n

f z a z a b z a
 



 
    

 
where

1
( ) n

n
n

b z a





 is the principal part of the expansion of ( )f z  at the singular point z a . 

There are now three possible cases, discussed as follows. 

3.3.2 Removable Singularity: If the principal part of ( )f z at z = a contains no term i.e. bn = 0, for all 
n, then the singularity z = a is called a removable singularity of ( )f z .  In such a case, the singularity can 
be removed by defining the function at z = a in such a way that it becomes analytic there. For example, 

the function sin( ) zf z
z

  is undefined at z = 0. Also, we have 
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3 5sin 1 .........
3 5

z z zz
z z

 
   

 
 

2 4

1 ...........
3 5
z z

    

Thus, sin z
z

 contains no negative powers of z. If it were the case (0) 1f  , then z = 0 is a removable 

singularity which can be removed by simply redefining (0) 1f  . This function is purely analytic. 

3.3.3  Pole: If the principal part of ( )f z at z = a  contains a finite number of terms, say m, i.e.   nb  = 0 
for all n such that n > m, then the singularity is called a pole of order m. Poles of order 1, 2, 3 are called 
simple, double, triple poles. The coefficient b1is called the residue of ( )f z at the pole a.    

Thus, if z=a is a pole of order m of the function ( )f z , then ( )f z has the expansion of the form  

 

0 1

1 2
20

1
1 1

0

( ) ( ) ( )

( ) ...
( ) ( )

1 ( ) ... ( ) ( )
( )

( ) ,
( )

m
n n

n n
n n

n m
n mn

m m n
m m nm n

m

f z a z a b z a

bb ba z a
z a z a z a

b b z a b z a a z a
z a

z
z a





 






 




    

     
  

          




 

where ( )z  is analytic for z a R  and ( ) 0ma b   . Hence, if ( )f z  has a pole of order m at z = a, 
then ( )f z   as z a  in any manner, i.e., an analytic function cannot be bounded in the 
neighbourhood of a pole. 

For example, the function  2 3

2( )
( 5) ( 4)

zf z
z z




 
 has z = 5, z = 4 as poles of order two and three 

respectively. 

3.3.4 Isolated Essential Singularity:  If the principal part of ( )f z at z = a has an infinite number of 
terms, i.e., 0nb  for infinitely many values of n, then the singularity a is called isolated essential 

singularity or essential singularity. In this case, a is evidently also a singularity of 1
( )f z

. 

For example, 
1

2 3

1 1 11 ...
2 3

ze
z z z

      has z = 0 as an isolated essential singularity. 

3.3.5 Example:  What kind of singularity has the function 
2( )

4

zef z
z




? 

Solution:  Poles of ( )f z are given by 2 4 0 2z z i     . Hence, z = 2i and z = -2i are simple 
poles i.e., poles of order 1. 
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3.3.6 Theorem: If an analytic function ( )f z  has a pole of order m at z a , then 1
( )f z

 has a zero of 

order m at z a  and conversely. 

Solution:  Suppose that the analytic function ( )f z  has a pole of order m at z a . We shall prove that 
1
( )f z

 has a zero of order m at z a . By definition, ( )f z  is expressible as 

( )( )
( )m

zf z
z a





 

i.e.,  ( ) ( ) ( )mz a f z z  ,            (1) 

where ( )z  is analytic and ( ) 0a  . 

From (1), we get   1 ( )
( ) ( )

mz a
f z z


            (2) 

Making z a  in (2) and noting that ( ) 0a  , we get 1 0
( )f z

  as z a . This implies that 1
( )f z

 has 

a zero of order m. Conversely, suppose that 1
( )f z

 has a zero of order m, we shall prove that ( )f z  has a 

pole of order m. By definition, 1
( )f z

 is expressible as 

1 ( ) ( )
( )

mz a z
f z

   ,           (3) 

where ( )z  is analytic and ( ) 0a  .  

From (3), we get 1( ) ( )
( )

mz a f z
z

   . Taking  1

1 ( )
( )

z
z




       

1( ) ( ) ( )mz a f z z            (4) 

Since ( )z  is analytic, therefore 1( )z  is also analytic and 1( ) 0 ( ) 0a a    . The equation (4) 

proves that ( )f z  has a pole of order m, since 1( )( )
( )m

zf z
z a





 . 

Further, note that poles are isolated, since zeros are isolated. 

3.3.7 Example: Show that 21/ze  has no singularity. 

Solution:  Here, 2

2
1/z

1/ z

1( )f z e
e

  . Poles of ( )f z  are given by 21/ z 0e  , which is not possible for any 

value of z real or complex.  

Now, zeros of ( )f z are given by 21/z 0e e   so that 2

1 0z
z

     . 
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Here, z is a zero of order two so that there is no singularity. Thus, we conclude that ( )f z  is free from 
any singularity. 

3.3.8 Example:  If a function ( )f z  is analytic for all values of z and if ( ) 0f z    for some constant 
  which is strictly positive, then prove that ( )f z  is constant. 

Solution: Consider the function 1( )
( )

g z
f z

 .  Since ( )f z  , therefore 

1 1( )
( )

g z M
f z 

    ,  

where M  is any positive number. Hence, by Liouville’s theorem which states that, “ A function regular 
in all finite regions of complex plane and bounded is equal to a constant”. We have ( )g z  and hence 

( )f z  will be constant provided that ( )g z  is analytic for all values of z. This is so in view of the fact that 
( )f z  is analytic for all values of z. Hence the result. 

3.3.9 Example:  Find the singularities of the function  ( )
1

c
z a

z
a

ef z
e






 , indicating the character of each 

singularity. 
Solution: Here 

1

exp
( )

1 exp 1 1

1 .
. 1

c
z a

z
a

c
c z az a

z a a
z a

a

c
e z af z

z ae
a

e e e e
e e








 
   

    
 

      
 

1
2

2

( )1 1 ...
2

c
z a z a z ae e

a a




   

      
  

2 2
211 ... 1 1 ... 1 ... ..

2
c c z a z ae e

z a z a a a
                                        

 

Clearly, this expansion contains positive and negative powers of (z -a). Moreover, terms containing 
negative powers of (z -a) are infinite in number. Hence, by definition, z = a is an isolated essential 
singularity. 

Again,  ( )
1

c
z a

z
a

ef z
e





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Evidently, denominator has zero of order one at 2 1  
z

n iae e   i . .    2e z n ia  .Thus, ( )f z  has a pole 
of order one at each point  2z n ia  , where n = 0, + 1, + 2… 

3.3.10 Example:  Find zeros and poles of
 

2

2

1( )
1

zf z
z
    

 

Solution:  Zeros of ( )f z  are given by ( ) 0f z   i.e., 

 
2

2

2

1( ) 0 1 0 1, 1.
1

zf z z z
z
             

Hence, z = -1 is a zero of order 2. 

Poles of ( )f z are given by putting the denominator of ( )f z  zero i.e., 
2 2 2 2( 1) 0 ( ) ( ) 0 , , , .z z i z i z i i i i           

Thus, z = i and z = -i are poles each of order 2. 

3.3.11 Example:  Discuss the nature of singularities of the function ( ) tanf z z . 

Solution:  We have sin( ) tan
cos

zf z z
z

   . Hence, to obtain the singularities of ( )f z , the denominator of 

( )f z  equating to zero, we get 

cos 0 2 ,
2

(4 1) , (2 1) ,
2 2

z z n n

z n n z n n



 

    

       



 
 

Hence, (2 1) ,
2

z n n
    are the simple poles of  f (z). 

3.3.12 Example: A function which has no singularity in finite part of the complex plane or at   is 
constant. 

Solution: Suppose that the function ( )f z  

(i) has no singularity in the finite part of the z-plane. 
(ii) has no singularity at z    . 

Due to (i), ( )f z  can be expanded in a Taylor’s series about 0z   in the form 
0

( ) n
n

n
f z a z




   , where z 

is any point inside or on z k  , where k is an arbitrary positive real number, thus        

 
0

1 n
n

n
f a z

z






    
 

            (1) 
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From (ii), we note that 1f
z

 
 
 

 has no singularity at 0z  , so 1f
z

 
 
 

 can be expanded in a Taylor’s 

series as  

0

1 n
n

n
f b z

z




    
 

             (2) 

From (1) and (2), we get 

0 0

n n
n n

n n
a z b z

 


 
   

This is possible only if (i) 0 1n na b n     

                         (ii) 0 0a b  

This implies that 0 0

1f a b
z

    
 

= constant and thus ( )f z  is constant. 

3.3.13 Example: Show that a function which has no singularities in the finite part of the complex plane 
and has a pole of order n at z   , is a polynomial of degree n. 

Solution:  Suppose that the function ( )f z  

(i) has no singularity in the finite part of the complex plane, 
(ii) has a pole of order n at z    . 

Due to (i), ( )f z  can be expanded in a Taylor’s series about 0z   in the form of 

0
( ) m

m
m

f z a z



   

 
0

1 m
m

m
f a z

z






    
 

            (1) 

From (ii), we note that 1f
z

 
 
 

 has a pole of order n at 0z   i.e., principal part of Laurent’s expansion of 

1f
z

 
 
 

 contains only n terms. Thus,  

0 1

1 n
m m

m m
m m

f b z c z
z




 

     
 

          (2) 

From (1) and (2), we get 

 
0 0 1

n
m m m

m m m
m m m

a z b z c z
 

 

  
     

0
0

m
m

m
a b z




    and  m ma c m   such that  1 m n   and  0na    for 1,2,...   

Thus, (1) becomes 
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0 0

1 ( ) .
n n

m m
m m

m m
f a z f z a z

z


 

      
 

 

This implies that ( )f z  is a polynomial of degree n. 

3.3.14Theorem (Limiting Points of Zeros):  Let ( )f z  be a function regular in a domain D . Let  

1 2, ,..., ,...n     be a set of points having a limiting point   in the interior of D. If ( ) 0f z   at 
points 1 2, ,..., ,...n   , it follows that either ( )f z  vanishes identically throughout the interior of D or 

( )f z  has an isolated essential singularity at z  . 

Proof:  Since ( )f z  is analytic so that it is continuous function having zeros at 1 2, ,..., ,...n   Thus, 
every neighbourhood of the point z   containing zeros of the function. Therefore, z   must be 
zero of ( ).f z  

 But we know that zeros are isolated, therefore   cannot be a zero of ( )f z . Hence, ( )f z  must be 
identically zero. Now, considering the case ( ) 0f z  , then z   is a singularity of ( )f z . Hence, in this 
case the singularity is isolated but it is not a pole, since ( )f z  does not tend to   as z tends to   in any 
manner, so that the limit point of zeros must be an isolated essential singularity of ( )f z . 

3.3.15 Remarks: The following two results are direct consequences of the above theorem. 

(i) If a function is regular in a region and vanishes at all points of a sub region of the given region, 
or along any arc of a continuous curve in the region, then it must be identically zero throughout 
the interior of the given region.  

(ii) If two functions are regular in a region, and have identical values at an infinite number of points 
which have a limiting point in the region, they must be equal to each other throughout the 
interior of the given region i.e. If two functions, which are analytic in a domain, coincide in a 
part of that domain, then they coincide in the whole domain. For this, we take 

1 2( ) ( ) ( )f z f z f z   . 

3.3.16 Limiting Point of Poles: Let ( )f z  be analytic except at a set of points which are poles say 

1 2, ,..., ,...n     having a limit point ‘ ’in the region D. Thus, every neighbourhood of the point 
z  containing pole of ( )f z . Thus, z  cannot be a pole and it is not isolated (Since poles are 
isolated). Such a singularity is called non-isolated essential singularity or simply essential singularity. 
3.3.17 Example:  Find the kind of singularities of the following functions 

(i) 
2

cot
( )

z
z a




 at z a and z   . 

(ii) at 0z   

(iii) at  

1tan
z

 
 
 

1sin
1 z
 
  

1z 
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Solution: (i) Here, 2 2

cot cos(z)
(z a) sin (z a)

z zf
z

 


 
 

 . 

Poles of (z)f  are given by  2(z a) sin 0z  . 

 2(z a) 0    or  sin 0z    

 z ,a a       or   , 0, 1, 2........z n n         

 z ,a a       or , 0, 1, 2......z n n     

Obviously, z    is the limit point of these poles. Hence, z    is a non-isolated essential singularity 
as limit point of a pole is a non-isolated essential singularity. Also,  z a  is a double pole of order 2. 

(ii)  Here, 

1sin
1(z) tan

1cos

zf
z

z

 
         
 
 

 . Poles of  (z)f   are given by 1cos 0
z

   
 

 

1 2 , 0, 1, 2,....
2

1 , 0, 1, 2,.....
2

2

n n
z

z n
n





     

    


 

Clearly, z = 0 is the limit point of these poles. Hence, z = 0 is a non-isolated singularity. 

(iii) Here, 1(z) sin
1

f
z

    
, zeros of ( )f z  are given by 1sin 0

1 z
    

 

 

1 , 0, 1, 2,.....
1

11 , 0, 1, 2,.....

n n
z

z n
n





    


     
 

Clearly, 1z   is the limit point of these zeros. Hence, 1z   is an isolated essential singularity 
3.3.18 Exercise: Find the poles of the following functions: 

(i) 
2 3 4

1
( 1) ( 1)z z 

 (ii) cotz z   (iii) 5

sin z
z

  (iv) 1
1 ze

 (v)
1 z

z
e

 

3.3.19 Behaviour of an Analytic Function near an Isolated Essential Singularity: As we know that if 
z = a is a pole of an analytic function ( )f z , then ( )f z   as z a  in any manner. The behaviour of 
an analytic function near an isolated essential singularity is of much complicated character. The 
following theorem is a precise statement of this complicated nature of f (z) near an isolated essential 
singularity and this theorem is called Weierstrass theorem. 
3.3.20 Weierstrass Theorem: If ‘a’ is an isolated essential singularity of ( )f z , then given positive 
numbers l,  , however small, and any number K, however large, there exists a point z in the circle  
| z  - a  | <l  at which | ( )f z  - K| <  
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(or) 
In any neighbourhood of an isolated essential singularity, an analytic function approaches any 

given value arbitrarily closely. 
Proof:  We first observe that if l and M are any positive numbers, then there are values of z in the circle 
|z - a| < l at which  

| ( )f z  |>M            (1) 

For, if this were not true, then we would have  ( )f z M for z a l  . If the principal part in the 

Laurent expansion of ( )f z about ais 
1

( ) ,n
n

n
b z a





 where 

1

1 ( )
2 ( )n n

f wb dw
i w a  

 


and    is the circle  

| w - a | = r,  r being sufficiently small, then 

1

1

1

1

1 ( )
2 ( )

1 ( ) ( )
2

2

2 .
2

n n

n

n

n n

f wb dw
i w a

w a f w dw
i

M r dw

M r r Mr
















 







 


 

 

 

 

By the result of the absolute value of a complex integral, this holds for all 1n  and r, so that, making 
0r  , we find that bn = 0 for 1n  .This implies that there is no isolated essential singularity at z = a. 

But this contradicts the hypothesis that a is an isolated essential singularity of ( )f z . Thus, the observed 
result (1) is true, i.e., “in the neighbourhood of an isolated essential singularity, ( )f z  cannot be 
bounded.” 

Now, let us take any finite, but arbitrary positive number K. There are now two distinct 
possibilities, either ( )f z  - K has zeros inside every circle |z - a| = l or else we can find  a sufficiently 
small l such that ( )f z  - K has no zero for | z - a | <l. In the first case, the result follows immediately. In 
the second case, choosing a sufficiently small l, we have  

( ) 0f z K  in | z - a | <l, so that 

 1( )
( )

z
f z K

 


 

is regular for |z - a| <l, except at a whereas we shall just see, ( )z has an essential singularity.  

We have  1( )
( )

f z K
z

   . 

If ( )z were analytic at a, ( )f z  would either be analytic or have a pole at a. On the other hand, if ( )z  
has a pole at a, ( )f z would be obviously analytic there. Thus, we reach at the contradiction and 
therefore, ( )z has an essential singularity at a. So, due to (1), given  > 0, there exists a point z in the 
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circle |z - a | <l such that 1( ) . ., ( )z i e f z K   


.Hence, theorem is proved. 

3.3.21 Remark:  The theorem 3.3.19 helps us to understand clearly the distinction between poles and 
isolated essential singularities. While ( )f z  , as z tends to a pole in any manner, at an isolated 
essential singularity ( )f z  has no unique limiting value, and it comes arbitrarily close to any arbitrarily 
pre assigned value at infinity of points in every neighbourhood of the isolated essential singularity. 
3.4 Maximum Modulus Principle: Here, we continue the study of properties of analytic functions. 
Contrary to the case of real functions, we cannot speak of maxima and minima of a complex 
function ( )f z , since ԧis not an ordered field. However, it is meaningful to consider maximum and 
minimum values of the modulus ( )f z of the complex function ( )f z , real part of ( )f z and imaginary 
part of ( )f z . The following theorem known as maximum modulus principle, is also true if ( )f z  is not 
one-valued, provided ( )f z  is one-valued. 

3.4.1 Maximum Modulus Theorem:  Let ( )f z  be analytic within and on a simple closed contour C. If 
| ( )f z | M on C, then the inequality | ( )f z | <M holds everywhere within C. Moreover | ( )f z | = M at a 
point within C if and only if ( )f z  is constant. 

In other words, | ( )f z | attains the maximum value on the boundary C and not at any interior point of the 
region D bounded by C. 

Proof:  We prove the theorem by contradiction. If possible, let | ( )f z | attain the maximum value at an 
interior point z = z0 of the region D enclosed by C. Since ( )f z  is analytic inside C, we can expand ( )f z  
by Taylor’s theorem in the neighbourhood of pointz0 as 

0
0

( ) ( )n
n

n
f z a z z




    where 

0

1 ( )
2 ( )n n

f za dz
i z z

 


 

and   is the circle |z - z0| = r, r being small. 

We have 0
iz z re    i.e., 0 , 0 2 .iz z re        

Also, 
2

0 0

( )

0 0

( ) ( ) ( )
n in m im

n m
n m

n m i n m
n m

n m

f z f z f z

a r e a r e

a a r e

 



 


 

 
 

 



  

  

 

Integrating both sides from 0 to 2  , we get 
2 22 ( )

0 00 0

2

0

( )

2 ,

m n i n m
n m

n m

n
n n

n

f z d a a r e

a a r n m

 




 
 

 





   

 
 

2 2

0
2 ,n

n
n

a r 



            (1) 
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where 
2

( )

0

0
2

i n m if n m
e d

if n m


 


 
  

 

From (1), we have for n = 0, 
2 2 2

0
0

( ) 2f z d a


   

and putting z = z0in this, we find 
2 2 2

0
0

22 2

0 0
0

( ) 2

( ) 2

of z d a

f z d a





 

 



 
 

2 2 2 2

0 0 0 0( ) 2 2 ( )f z a f z a               (2) 

Also, since ( )f z  has maximum value at z = z0, so 
2 2 2

0 0( ) ( )f z f z a  . 

Hence from (1), we get 
22 22

0 0

1 ( )
2

n
n

n
a r f z d









   

2 2

0
0

2 2

0 0

1 ( )
2

1 2
2

f z d

a a









 

 
 

Thus,  2 2 2 22 4
0 1 2 0...a a r a r a     for positive values of r. 

Hence, 1 2 3 ... 0a a a     

1 2 3. ., ... 0i e a a a    . 

Which implies ( )f z  = a0 = constant. 

Hence, | ( )f z | cannot attain a maximum value at an interior point of D which is a contradiction to our 
supposition. Also| ( )f z | attains a maximum value at an interior point of D if it is constant and in that 
case, | ( )f z | = M throughout D. 

3.4.2 Minimum Modulus Principle: Let ( )f z  be analytic within and on a simple closed contour C and 
let ( ) 0f z   inside C. Further suppose that ( )f z  is not constant, then | ( )f z | cannot attain a minimum 
value inside C. 

Proof: Since ( )f z  is analytic within and on C and also ( ) 0f z  inside C, so 1
( )f z

 is also analytic 

within and on C.  Therefore, by maximum modulus principle, 1
( )f z

 cannot attain a maximum value 

inside C which implies that | ( )f z | cannot have a minimum value inside C. 
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3.4.3 Theorem: Let ( )f z  be an analytic function, regular for |z| < R and let M(r) denote the maximum 
of | ( )f z | on |z| = r, then M(r) is a steadily increasing function of r for r < R. 

Proof:   By maximum modulus principle, for two circles  
|z| = r1 and |z| = r2, we have 

( ) ( )f z M r , where r1< r2 

which implies 1 2( ) ( )M r M r , r1< r2 

and      M(r1) = M(r2) if ( )f z  is constant. 

Also M(r) cannot be bounded because if it were so, then ( )f z is a constant (by Liouville’s theorem). 
Hence M(r) is a steadily increasing function of r. 

3.4.4 Schwarz’s Lemma: Let ( )f z be analytic in a domain D defined by |z| < R and let ( )f z M  for 

all z in D and f (0) = 0, then ( ) .Mf z z
R

  

Also, if the equality holds for any one z, then  ( ) iMf z ze
R

  where   is real constant. 

Proof:   Let C be the circle |z| = r <R. 

Since ( )f z is analytic within and on C, therefore by Taylor’s theorem 

0
( ) n

n
n

f z a z



   at any point z within C. 

i.e.,     2
0 1 2( ) ...f z a a z a z     

Under the assumption f (0) = 0, we get a0 = 0 
2 3

1 2 3( ) ...f z a z a z a z              (1) 

Let       ( )( ) f zg z
z

            (2)  

then we have 
2

1 2 3( ) ...g z a a z a z            (3) 

The function ( )g z  in (2) has a singularity at z = 0 which can be removed if we define g (z) = a1 for z = 0 
i.e. g (0) = a1. Now, ( )g z  is analytic within and on C and so by maximum modulus principle, | ( )g z | 
attains maximum value on C, say at z = z0 and not within C. 
Thus, |z0| = r<R and  

 0
0

0

( ) ( )( ) max . ( )f z f z Mg z value of g z
z z r

      (4) 

and thus for any z inside C, we have 
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( ) Mg z
r

  

( ). ., ( )f z M Mi e f z z
z r r

           (5) 

This inequality holds for all r such that r< R. 
Now, L. H. S. is free from r, making r R in (5), we find 

( ) Mf z z z
R

   such that z R  . 

Also, from (4), we note that for the point z0 on C, 

0 0( ) Mf z z
r

  

Making r R , we get 

0 0( )

. ., ( ) .i

Mf z z
R

Mi e f z ze for z lying on z R
R





 
 

Which proves the result. 
3.4.5 Remarks: 
(i) If we take M = 1, R = 1, then Schwarz’s lemma takes the form as follows, “If ( )f z  is analytic  

     in a domain D defined by |z|<1  and ( ) 1f z   for all z in D and f (0) = 0, then ( )f z z .  

     Also if the equality holds for any one z, then ( ) if z ze  , where   is a real constant.” 
(ii) In view of the power series expansion, 

2

( ) (0) '(0) ''(0) ...
2
zf z f z f f     

       We get 
2( ) '(0) ''(0) ...
2

f z zf f
z

    

        where we have assumed that ( )f z  satisfies the conditions of Schwarz’s lemma so that 

( )f z M
z R

  

         This implies that  
2

'(0) ''(0) .....
2
z Mf f

R
    

         By setting z = 0, we obtain '(0) Mf
R

  
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(iii)  Let ( )f z  be analytic inside and on the unit circle, ( )f z M  on the circle and f (0) = a 

where 0 < a < m . Then 

  ( )
M z a

f z M
a z M





 

inside the circle. 
       For its proof, we consider 

2

( )( )
( )

f z az M
a f z M

 



 

       Then,      2 2 2

(0)(0) 0
(0)

f a a aM M
a f M a M

  
  

 
 

       Also, ( )z is regular at every point on the unit circle. 

       Also, 
2 2

( )( ) 1
( )

f z a M az M M
a f z M a M M

  
  

 
 . 

       Thus, ( )z satisfies all the conditions of Schwarz’s lemma. 

       Therefore,  

2

( )( )
( )

f z az M z
a f z M

 
 


 

       which gives 

( ) .
M z a

f z M
a z M





 

3.5 Meromorphic Function:  A function ( )f z  is said to be meromorphic in a region D if it is analytic 
in D except at a finite number of poles. In other words, a function ( )f z whose only singularities in the 
entire complex plane are poles, is called a meromorphic function. The word meromorphic is used for the 
phrase “analytic except for poles”. The concept of meromorphic is used in contrast to holomorphic.A 
meromorphic function is a ratio of entire functions. Rational functions are meromorphic functions. e.g 

2

5 3 4 2

2 2 2 2

1 ( 1)( 1)( )
2 ( 2 1)

( 1)( 1) ( 1)( 1)
( 1) ( ) ( )

z z zf z
z z z z z z
z z z z
z z z z i z i

  
 

   
   

 
  

 

has poles at z = 0 (simple), at z i   (both double) and zeros at 1z    (both simple). Since only 
singularities of ( )f z  are poles, therefore ( )f z  is a meromorphic function. 

Similarly, tan z, cot z, sec z are all meromorphic functions. 
3.5.1 Remark: A meromorphic function does not have essential singularity.  
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a 1 

b 
T1 C 

3.5.2 Theorem: Let ( )f z  be analytic inside and on a simple closed contour C except for a finite number 

of poles inside C and let ( ) 0f z   on C, then  1 '( )
2 ( )C

f z dz N P
i f z

   . 

Where N and P are respectively the total number of zeros and number of poles of ( )f z inside C, a zero 
(pole) of order m being counted m times. 

Proof: Suppose that ( )f z  is analytic within and on a simple closed contour C except at a pole 

z = a of order p inside C and also suppose that ( )f z has a zero of order n at z = b inside C. 

Then, we have to prove that 
1 '( )

2 ( )C

f z dz n p
i f z

   

Let 1  and T1 be the circles inside C with centres at z = a and z = b respectively. 

Then, by cor. to Cauchy’s theorem, we have 

1 1

1 '( ) 1 '( ) 1 '( )
2 ( ) 2 ( ) 2 ( )C T

f z f z f zdz dz dz
i f z i f z i f z  

          (1) 

Now, ( )f z  has pole of order p at z = a, so 

( )( )
( ) p

g zf z
z a




 ,           (2) 

where g(z) is analytic and non-zero within and on 1 . Taking logarithm of (2) and differentiating, we 

get

1

log ( ) log ( ) log( )
Differentiatingw.r . t . z, we

'( ) '( ). ., .
( ) ( )

integrating along ,

f z g z p z a
get

f z g z pi e
f z g z z a

On we have

  

 


 

1 1 1

'( ) '( )
( ) ( )

f z g z dzdz dz p
f z g z z a  

   


      (3) 

Since '( )
( )

g z
g z

 is analytic within and on 1 , by Cauchy theorem, 

1

'( ) 0
( )

g z dz
g z

 . 
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Thus, (3) gives 
1

'( ) 2
( )

f z dz ip
f z

          (4) 

Again, ( )f z has a zero of order n at z = b, so we can write  

( ) ( ) ( )nf z z b z  ,          (5) 

where ( )z  is analytic and non-zero within and on T1 . 

Taking logarithm, then differentiating, we get 

 '( ) '( )
( ) ( )

f z n z
f z z b z




 


 

 
1 1 1

'( ) '( )
( ) ( )T T T

f z dz zdz n dz
f z z b z




    


     (6) 

Since '( )
( )

z
z




is analytic within and on T1, therefore
1

'( ) 0
( )T

z dz
z




  and thus (6) becomes 

  
1

'( ) 2
( )T

f z dz in
f z

         (7) 

Writing (1) with the help of (4) and (7), we get 

  1 '( )
2 ( )C

f z dz p n n p
i f z

             (8) 

Now, suppose that ( )f z  has poles of order pm at z = am for m = 1, 2,…,r and zeros of order nm at z = bm 
for m = 1, 2,…,s within C. We enclose each pole and zero by circles 1 2, ,...., r   and        T1, T2, …, Ts. 
Thus, (8) becomes 

  
1 1

1 '( )
2 ( )

s r

m m
m mC

f z dz n p
i f z  

    

Taking 
1 1

,
s r

m m
m m

n N p P
 

    , we obtain 

  1 '( )
2 ( )C

f z dz N P
i f z

  . Which proves the theorem. 
 

3.5.3 Theorem (Argument Principle) : If ( )f z  is analytic inside and on a closed contour C and does 
not vanish on C. Then, 

1 [arg (z)]
2 CN f


   , 

where N  stands for the total number of zeros of ( )f z inside C and C  represents the variation (change) 
of log (z)f  around the contour C. 

Proof:  We know that  1 '( )
2 ( )C

f z dz N P
i f z

         (1) 
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where N and P are respectively the total number of zeros and number of poles of ( )f z inside C . In the 
present case, ( )f z is analytic and has no pole inside C, therefore P = 0 . Hence, equation (1) becomes

 
1 '( )

2 ( )C

f z dz N
i f z

 ⟹
'( ) 2
( )C

f z dz iN
f z

  

	⟹ 	 2 [ log (z) ] [log (z)]c CiN f f           (2) 

Where C  stands for the variation of log (z)f  as z moves once around the contour C.  

log log
log log arg ( )

iSince z x iy re
z r i
z r i f z




  

  
  

 

Therefore, we have 

log ( ) log ( ) arg ( ) ,f z f z i f z   

Hence, [log ( )] log ( ) [arg (z)]C C Cf z f z i f        

But log ( ) 0C f z     . Since log ( )f z  is single valued i.e., it remains as it is, as z goes once around C. 
Thus, we get 

 [log ( )] [arg (z)]C Cf z i f   .  

Therefore, from equation (2), we obtain  

 
2 [arg (z)]

1 [arg ( )]
2

C

C

iN i f

N f z





 

  
 

Which proves the theorem. 

3.5.4 Rouche’s Theorem:  If ( )f z and ( )g z  are analytic inside and on a closed contour C and | ( )g z | < | 
( )f z | on C, then ( )f z  and ( )f z  + ( )g z have the same number of zeros inside C. 

Proof:  First we prove that neither ( )f z nor ( )f z  + ( )g z  has a zero on C. If ( )f z  has a zero at  

z = a on C, then f (a) = 0 
Thus,  

 
( ) ( ) ( ) ( ) 0

( ) 0 ( ) ( )

g z f z g a f a

g a f a g a

   

   
 

i.e. | f (z)| = |g(z)| at z = a, 

which is contrary to the assumption that | ( )g z | < | ( )f z | on C. 

Again, if ( )f z  + ( )g z  has a zero at z = b on C, 

then ( )f b + ( )g b = 0  ( ) ( )f b g b    
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i.e. | ( )f b | = | ( )g b | 

Thus, neither ( )f z nor ( )f z + ( )g z  has a zero on C. 

Now, let N and 'N  be the number of zeros of ( )f z  and ( )f z  + ( )g z respectively inside C. We are to 
prove that N = 'N . Since ( )f z  and ( )f z  + ( )g z both are analytic within and on C and have no pole 
inside C, therefore by the argument principle 

1 ' , 0,
2
1 ' 1 ' ', '

2 2

C

C C

f dz N P with P gives
i f

f f gdz N dz N
i f i f g



 

  


  



 

Subtracting these two results, we get 

  

1 ' ' ' '
2 C

f g f dz N N
i f g f
 

              (1)
 

Let us take  
( )( ) ,
( )

g zz so that g f
f z

    

, 1 . ., 1gNow g f i e
f

     

' ' ' ' ' '(1 ) '
(1 )

f g f f f f f
f g f f f

   
 

    
  

  
 

' '
1

f
f




 


 

' ' ' '. .,
1

f g fi e
f g f





 

 
          (2) 

Using (2) in (1), we get 

11 ' 1' '(1 )
2 1 2C C

N N dz dz
i i

  
  

    


       (3) 

Since we have observed that | |< 1, so binomial expansion of (1 +  )-1is possible and this expansion in 
powers of  is uniformly convergent and hence term by term integration is possible. 

Thus, 
1 2 3'(1 ) '(1 ...)

C C
dz dz             

2' ' ' ........
C C C

dz dz dz               (4) 

Now, the functions f and g both are analytic within and on C and 0, 0f g   for any point on C, 
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therefore g
f

   is analytic and non-zero for any point on C. Thus,  and it’s all derivatives are analytic 

and so by Cauchy’s theorem, each integral on R.H.S. of (4) vanishes. Thus 

 1'(1 ) 0
C

dz     

and therefore from (3), we conclude ' 0N N   i.e., 'N N  . Which proves the theorem. 
3.5.5  Example: Determine the number of roots of the equation 

 z8 -4z5 + z2 -1 = 0 

that lie inside the circle |z| = 1. 

Solution:  Let C be the circle defined by |z| = 1. Let us take 8 5 2   4 ,( )  1( )  z z g zf z z    . 

On the circle C, 

 

22

58 5 3

3

1( ) 1
( ) 4 4

1 1 2 2 1
4 1 34

zg z z
f z z z z z

z


 

 


   



 

Thus ( ) ( )g z f z  and both ( )f z and ( )g z are analytic within and on C, Rouche’s theorem implies that 
the required number of roots is the same as the number of roots of the equation z8 - 4z5 = 0 in the region 
|z| < 1. Since 3  4 0z    for |z| < 1, therefore the required number of roots is found to be 5 

3.5.6 Example:  Determine the number of roots of the equation 

  z7 - 4z3 + z -1 = 0 

that lie inside the circle |z| = 1. 

Solution:  Let C be the circle defined by |z| = 1. Let us take    3 74 ,      1.f z z g z z z      

On the circle C, 
7

33

7 1( ) 1 1 1 3 1
( ) 4

 
4 )4

1
(1 4

z zg z
z z z

zz
f

   
    


 

 . 

Thus, | ( )g z | < | ( )f z | and both ( )f z  and ( )g z  are analytic within and on C. Rouche’s theorem implies 
that the required number of roots is the same as the number of roots of the equation ( )f z = 0 in the 
region |z| <1. Since ( )f z  has three zeros, counting multiplicities, inside the circle |z| = 1, so does 

( )f z + ( )g z . Thus, the given equation has three roots inside the circle |z| = 1. 

3.5.7 Example:  Prove that all the roots of the equation 

z7 - 5z3 + 12 = 0 
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lie between the circles |z| = 1and |z| = 2. 

Solution:(i) Consider the circle C1 defined by |z| = 1 and suppose that   12f z  and   7 35  .zg z z   

Thus, (z)f  and (z)g  are both analytic within and on C1 . 

Also, 
7 337 5( ) 5 1 5 6 1 1

( ) 12 12 12 12 2

( ) 1
( )

z zg z z
f z

g

z

z
f z

 
     

 

 

Thus, | ( )g z | < | ( )f z | and both ( )f z  and ( )g z  are analytic within and on C1. Hence, by Rouche’s 
theorem, (z) (z)f g  i.e., z7 - 5z3 + 12 has the same number of zeros inside C1 as  (z)f .  But (z)f  has 
no zero inside C1, which implies that z7 - 5z3 + 12 = 0 has no zero inside C1.  

(ii) Consider the circle C2 defined by  |z| = 2 and suppose that   7f z z  and   35 z 1 .2g z   Thus, 

(z)f  and (z)g  are both analytic within and on C2 . Also, 

33 3

77 7

5 12( ) 5 12 5(2) 12 52 1
( ) 2 128

( ) 1 .
( )

zg z z
f z z z

g z
f z

  
    

 

 

Thus, | ( )g z | < | ( )f z | and both ( )f z  and ( )g z  are analytic within and on C2. Hence, by Rouche’s 

theorem, (z) (z)f g i.e., z7 - 5z3 + 12 has the same number of zeros inside C2 as (z)f .  Since 7(z) zf   
has 7 zeros inside C2, therefore z7 - 5z3 + 12 = 0 also has 7 zeros inside C2. From these two results, we 
conclude that the given equation has all its roots between C1 and C2.  

3.5.8 Example: Use Rouche’s theorem to prove that the equation z ne az  has n roots inside the 
circle 1z   , where a e  . 

Solution:  Let C denotes the circle 1z  . Let us take ( ) nf z az  and ( ) zg z e   . So, the given 

equation is of the form (z) g(z) 0f    . We note that (z)f  and (z)g  are both analytic within and on C. 
Further, 
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2

2

1 ...
2!(z)

(z)

1 ...
2!

1 1 11 ...
1! 2! 3! 1 ( a e)

zz

n n n

n

zzeg e
f az a z a z

z
z

a z

e
a a

  


  

  


   
   

 

(z) (z)g f   . 

Hence, by Rouche’s theorem, (z)f  and (z) g(z)f   have same number of zeros inside 1z   . But (z)f  
has n- zeros and consequently, the given equation has n roots inside 1z  . 

3.5.9 Theorem (Fundamental Theorem of Algebra):  Every polynomial of degree n has exactly n 
zeros. 

Proof:   Let us consider the polynomial 2
0 1 2 ... , 0n

n na a z a z a z a      

We take 2 1
0 1 2 1( ) , ( ) ...n n

n nf z a z g z a a z a z a z 
       

Let C be a circle |z| = r, where r > 1 

Now,   2 1
0 1 2 1

1
0 1 2 1

( )

( ) ....

( .... )

n n
n n

n
n

n
n

f z a z a r

g z a a r a r a r

a a a a r







 

    

    

 

Therefore, 

  

 

 

1
0 1 1

0 1 1

...( )
( )

...

n
n

n
n

n

n

a a a rg z
f z a r

a a a
a r






  


  
 

Hence, ( ) ( )g z f z  , provided that 

 
 0 1 1...

1n

n

a a a
a r

  
  

 0 1 1...
. ., n

n

a a a
i e r

a
  

        (1)  

Since r is arbitrary, therefore we can choose r large enough so that (1) is satisfied. Now, applying 
Rouche’s theorem, we find that the given polynomial ( ) ( )f z g z has the same number of zeros as ( )f z . 
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But ( )f z has exactly n zeros all located at z = 0. Hence, the given polynomial has exactly n zeros. 

3.6 Inverse Function: If ( )f z = w has a solution z = F(w), then we may write  f {F(w)} = w,  

F{ ( )f z } = z. The function F defined in this way, is called inverse function of  f. 

3.6.1 Theorem (Inverse Function Theorem): Let a function w = ( )f z  be analytic at a pointz = z0 
where 0'( ) 0f z   and w0 = 0( )f z . Then there exists a neighbourhood of w0 in the w-plane in which the 
function w = ( )f z  has a unique inverse z = F(w) in the sense that the function F is single-valued and 

analytic in that neighbourhood such that F(w0) = z0and 1'( ) .
'( )

F w
f z

  

Proof:  Consider the function 0( )f z w . By hypothesis, 0 0( )f z w  = 0. Since 0'( ) 0f z  ,  f  is not a 
constant function and therefore, neither 0( )f z w  nor '( )f z  is identically zero. Also 0( )f z w  is 
analytic at z = z0and so it is analytic in some neighbourhood of z0. Again, since zeros are isolated, 
neither 0( )f z w nor '( )f z has any zero in some deleted neighbourhood of z0. Hence, there exists  > 0 
such that 0( )f z w is analytic for 0z z    and  

0( ) 0, '( ) 0f z w f z    for 00 z z     . 

Let D denote the open disc 

{z : 0z z   } 

and C denotes its boundary 

{z : 0z z   }. 

Since 0( )f z w  for 0z z   , we conclude that | 0( )f z w | has a positive minimum on the circle C. 
Let 

0min ( )
z C

f z w m


  and choose   such that 0 < <m. 

We now show that the function ( )f z  assumes exactly once in D every value w1 in the open disc  T = 
{w: 0w w    }. We apply Rouche’s theorem to the functions 0 1w w   and 0( )f z w  . The condition 
of the theorem are satisfied, since 

  0 1 0 0min ( ) ( ) .
z C

w w m f z w f z w on C


        

Thus, we conclude that the functions 

0( )f z w  and ( 0( )f z w ) + ( 0 1w w ) = 1( )f z w , 

have the same number of zeros in D. But the function 0( )f z w  has only one zero in D i.e. a simple 
zeros at z0, since 

0( ( ) ) ' '( ) 0f z w f z     at  z0. 

Hence, 1( )f z w  must also have only one zero, say z1 in D. This means that the function ( )f z assumes 
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the value w, exactly once in D. It follows that the function w = ( )f z  has a unique inverse, say z = F(w) 
in D such that F is single-valued and w = f {F(w)}. We now show that the function  F is analytic in D. 
For fix w1 in D, we have ( )f z  = w1 for a unique z1 in D. If w is in T and F(w) = z, then 

1 1

1 1

( ) ( )
( ) ( )

F w F w z z
w w f z f z
 


 

            (1) 

It is noted that T is continuous. Hence, 1z z   whenever 1w w . Since 1z D  , as shown above 1'( )f z  
exists and is zero. If we let 1w w , then (1) shows that 

1
1

1'( ) .
'( )

F w
f z

  

Thus, '( )F w exists in the neighbourhood T of w0 so that the function F is analytic there. 



 

SSEECCTTIIOONN--IIVV  

4.1 Calculus of Residues: We know that in the neighbourhood of an isolated singularity z= 0z , a one 
valued analytic function (z)f may be expanded in a Laurent series as 

0 0
0 1

( ) ( ) ( )n n
n n

n n
f z a z z b z z

 


 
      

The coefficient b1of
0

1
(z z )

 in the Laurent series is called the residue of the function (z)f at the isolated 

singularity 0z . We shall use the notation 

1 0Re ( (z), z )b s f = 0Re (z z )s  to denote the residue of f at z0.  

Therefore, 0 1
1Re ( (z), z ) (z)dz

2
s f b f

i 
   , 

where ϒ is any circle with centre 0z z , which excludes all other singularities of (z)f .   

4.1.1 Computation of Residues in some special cases: 
4.1.1.1 Residue at a Simple Pole: (i) If f has a simple pole at 0z z , then 

0
0 0z z

Res(f(z),z ) lim(z z ) f(z).


   

Proof: Since f has a simple pole at 0z z , its Laurent expansion convergent in annulus 00  z z R    
has the form 

21
0 1 0 2 0

0

(z) (z z ) a (z z ) ...
(z z )

b
f a a      


 

Where 1 0b  .	By multiplying both sides of this series by 0( )z z  and then taking the limit as 0z z , we 
obtain 

0 0

2
0 1 0 0 1 0 1 0lim( ) ( ) lim ..[b ( ) ( ) ] ( ( , z. ) )

z z z z
z z f z a z z a z z b Res f z

 
       . 

(ii) If f has a simple pole at 0z z and f(z) is of the form (z)(z)
(z)

f 


 i.e. a rational function then  

   
0 0

0

0 0 0

0

0 0

0

z z z z

z z

(z)Res(f(z),z ) lim(z z ) f(z) lim(z z )
(z)

(z )(z)lim
(z) (z ) '(z )
(z z )





  

 



   

 



 

 where 0(z ) = 0, 0 0'(z ) ,  since (z) has a simple zero at z= z0. 

4.1.1.2 Residue at a Pole of Order n: If f has a pole of order n at z = z0, then 

  
0

1

0 01
1( ( ), ) lim (z z ) (z)

(n 1)!

n
n

nz z

dRes f z z f
dz




   

. 
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Proof: Because f is assumed to have pole of order n at 0z z , its Laurent expansion is convergent 
inannulus 00  z z R    and must have the form  

22 1
0 1 0 2 02 1

0 0 0

( ) ... ( ) ( ) ...
(z z ) ( ) ( )

n
n

b b b
f z a a z z a z z

z z z z
         

  
 

where bn ≠ 0. We multiply the last expression by 0(z z )n , 
1

0 2 0 1 0 0 0 1 0
2 1( ( ) ... ( ) ( ) ( ) ( ) ...) n nn n n

nz z f z b b z z b z z a z z a z z              

and then differentiate both sides of the equality (n-1) times, we have 
1

0 1 0 01 (z z ) f(z) (n 1)!b !a (z z ) ...
n

n
n

d n
dz




         

Since all the terms on the right hand side after the first involve positive integer powers of (z-z0), taking 
the limit as z tends to z0, we get 

0

1

0 11lim [( ) ( )] ( 1)!b
n

n
nz z

d z z f z n
dz




    

0( ( ), )Res f z z =
0

1

1 01
1b lim [( ) ( )]

( 1)!

n
n

nz z

d z z f z
n dz




 


, 

which is the required result. 
4.1.1.3 Residue at infinity: If f(z) is analytic or has an isolated singularity at infinity and if C is a circle 
enclosing all its singularities in the finite parts of the z-plane, the residue of f(z) at infinity is defined by 

 1
2 C

Res(f(z), ) f (z)dz
i


   = Coefficient of b1 in expansion of function f(z). 

Also, Res(f(z),∞) =  {Sum of residues at all finite singularities} 
4.1.2  Remarks: (i) The function may be regular at infinity, yet has a residue there.  

For example, consider a function bf (z)
z a




. 

Since, 1
2 C

Res(f(z), ) f (z)dz
i


  

1
2 C

b dz
i z a




  

     
2

02

i

i

b re i d
i re



 



 
2

02
b d b







   ,  

where C being the circle z a r  . 

Also, z a  is a simple pole of f(z) and its residue there is 1
2 C

f (z)dz b
i

 . 

Thus, Res(f(z),∞) = Res(f(z),a) b   
(ii) If the function is analytic at a point z = a, then its residue at z = a is zero but not so at infinity. 
(iii) In the definition of residue at infinity, C may be any closed contour enclosing all the singularities  
in the finite parts of the z-plane. 
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4.1.3 Example: Find the residue of
4

2 2
z

z a
at z =  ia. 

Solution: Let f(z)=
4

2 2
z

z a
 

Poles of f(z) are z = േia. Thus z =  ia is a simple pole. 
So, Res (f(z), ia) =    

iaz
lim z ia f z


  

   =
4

z ia

zlim ( z ia )
( z ia )( z ia )


 

 

  =
 

4

ia
lim

z

z
z ia 

=
4

2
( ia)

ia



 =
3

2
ia . 

4.1.4 Example: Find the residue of 4ize z  at its poles. 

Solution: Let 4

izef ( z )
z

 .Then, f(z) has a pole of order 4 at z = 0. So, 

 Res(f(z),0) =
3

30

1
3 6

iz

z

d ilim e
! dz


 . 

Alternatively, by the Laurent’s expansion, we can find residue of f(z) as the negative of coefficient of 
1/z. 

4.1.5 Example: Find the residue of
3

2 1
z

( z )
at z = ∞. 

Solution: Since z = 1, െ1 are the simple poles. Thus, 
Res(f(z),1) =    

1
1

z
lim z f z


  

       =
3

1

1
1 2z

zlim
z




 

Res(f(z),  1) =    
1

1
z
lim z f z


  

 =
3

1

1
1 2z

zlim
z




 

As we know, 
Res(f(z),∞) =  [Res(f(z),1) + Res(f(z),-1)] 

1 1 1
2 2

      
 

. 

Alternatively, by the Laurent’s expansion, we can find residue of f(z) as the negative of coefficient of 
1/z. 
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4.1.6 Example: Find the residue of
3

41 2 3
z

( z ) ( z )( z )  
at its pole. 

Solution: Let f(z)=
3

41 2 3
z

( z ) ( z )( z )  
. Poles of f(z) are given by z = 1,2,3; where z = 1 is a pole of 

order 4 and z = 2 and z = 3 are simple poles. 

Therefore, Res(f(z),1) =  3 1
3!


 Where f(z)=  

 41
z

z



i.e.

3

2 3
z( z )

( z )( z )
 

 
 

Resolve (z)  into partial fractions, we get 

(z)  =   8 27  5  
2 3

z  
(z ) (z )

  
 

 

2 2
8 271
2 3

'(z)
(z ) (z )

   
 

 

3 3
16 54
2 3

''(z)
(z ) (z )

 
 

 
 

4 4
48 162

2 3
'''(z)

(z ) (z )
  

 
 

3031
8

'''( )   

Res(f(z),1) = 303 101
8 6 16( )

  

Res(f(z),2) =
3

42 2
2 8

1 3z z

zlim( z ) f ( z ) lim
( z ) ( z ) 

   
 

 

Res(f(z),3) =
3

43 3

273
1 2 16z z

zlim( z ) f ( z ) lim
( z ) ( z ) 

  
 

. 

4.1.7 Example: Find the residue of 2
cot zf ( z )
z

 
 . 

Solution: Here 2
cos zf (z)

z sin z
 


 . 

We note that ݂ሺݖሻ has a double pole at z = 0 and simple pole at z = n; n = േ1,േ2,േ3,… 

Therefore, Res(f(z), n) =
2

2
1

z n

cos z
z

cos z n

 

 


 
 

 
 
 
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Also,  2
cos zf (z)

z sin z
 


 = 

2 2
4

3 3
2 5

1 (z )
2!

(z )
3!

z o

zz z o





 
  

 
 

  
 

 

   

2 2
4

2 2
2 4

12 2 2 2
4 4

3

2 2 2 2
4 4

3

2
3

2 2 2 2 2 2
2

1 (z )
2!

1 (z )
3!

1 1 (z ) 1 (z )
2! 3!

1 1 (z ) 1 (z ) ...
2! 3!

1 . ...

3.
2! 3!

z o

zz z o

z zo o
z

z zo o
z

Coeff of z
z

z z zCoeff of z





 

 

  



 
  

 
 
  

 

    
       

    
   

        
   

   


   

3

 

Also, by definition, Res(f(z),0) = Coefficient of 
21

3z


 . 

4.1.8  Exercise: Use an appropriate Laurent series to find the residue of the following: 

(i) f(z) = ଶ

ሺ௭ିଵሻሺ௭ାସሻ
, Res(f(z), 1) 

(ii) f(z) = ଵ

௭యሺଵି௭ሻయ
,Res(f(z), 0) 

(iii) f(z) = ସ௭ି଺

௭ሺଶି௭ሻ
 ,Res(f(z), 0) 

(iv) f(z) =ሺݖ ൅ 3ሻଶsin	ሺ ଶ

௭ାଷ
ሻ ,Res(f(z),െ3) 

(v) f(z) =݁ିଶ/௭మ ,Res(f(z), 0) 

(vi) f(z) = ௘ష೥

ሺ௭ିଶሻమ
,Res(f(z), 2) 

4.1.9 Exercise: find residues at each pole of the given function 

(i) f(z) = ௭

௭మାଵ଺
(ii) f(z) =ସ௭ା଼

ଶ௭ିଵ
 

(iii) f(z) = ଵ

௭రା	௭యିଶ௭మ
(iv) f(z) = ଵ

ሺ௭మି	ଶ௭ାଶሻమ
 

(v) f(z) = ௖௢௦௭

௭మሺ௭ିగሻయ
    (vi) f(z) = ௘೥

௘೥ିଵ
 

(vi) f(z) = sec  ݖ
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4.1.10Theorem (Cauchy Residue Theorem):Let f(z) be one-valued and analytic inside and on a 
simple closed contour C, except for a finite number of poles within C.Then 

   
C

f (z)dz = 2πi[Sum of residues of f(z) at its poles within C]. 

Proof:Let a1, a2,…., an be the poles of f(z) inside C. Draw a set of circles ϒr of radii ߝ and centre  
ar (r = 1, 2,…, n) which do not overlap and all lie within C. Then f(z) is regular in the domain 
bounded externally by C and internally by the circlesϒr. 

C  
Then by cor. to Cauchy’s theorem, we have 

C

f (z)dz =
1

r

n

r
f (z)dz

 
  . 

Now if aris a pole of order m, then by Laurent’s theorem, f(z) can be expressed as 

1

m
s

s
s r

bf (z) (z)
(z a )

  
 , 

where Ф(z) is regular within and on ϒr . Then, 

1
r

m
s

s
s r

bf (z)dz dz
(z a )


   

where 0
r

(z)dz


   by Cauchy’s theorem. 

Now, on r we have, |z-ar| =i.e. z = ar + eiθ  

Thus, dz =ieiθdθ,where θ varies from 0 to 2π as the point z moves once round r .  

21 1

0
1

r

m
s ( s)i

s
s

f (z)dz b e id
   



    

  1 2 ib  

    2   ri Residue of f z at a    , where
2 1

0

0 1
2 1

( s)i ,if s
e d

,if s
  


  

   
  

Hence, from (1),  
1
2

n

r
rC

f (z)dz i Re sidueof f (z)at a


  

   =  
1

2
n

r
r

i Re sidue of f (z)at a

  

   = 2 i  [Sum of residues of f(z) at its poles inside C]. 

a11 
a5 

5 

2 a2 a3 a4 4 
3 
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4.2 Evaluation of Real Trigonometric integral: In this section, we shall see how residue theory can be 
used to evaluate real integrals of the following forms: 

(i) ׬ ,ߠݏ݋ሺܿܨ ߠሻ݀ߠ݊݅ݏ
ଶగ
଴  

(ii) ׬ ݂ሺݔሻ݀ݔ
ஶ
ିஶ  

(iii) ׬ ݔ݀	ݔߙݏ݋ܿ
ஶ
ିஶ  

(iv) ׬ ݔ݀	ݔߙ݊݅ݏ
ஶ
ିஶ ,  

where F and f are rational functions. For the rational function f(x) = p(x)/q(x), we will assume that 
the polynomial p and q have no common factors. 

Integrals of the form׬ ,ࣂ࢙࢕ࢉሺࡲ ࣂࢊሻࣂ࢔࢏࢙
૛࣊
૙ : The basic idea here is to convert a real trigonometric 

integral into a complex integral, where the contour C is the unit circle│ݖ│ ൌ 1 centered at the origin. To 
do this, we parametrize this contour by z = ݁௜ఏ , 0 ൑θ൑  .ߨ2
We can then write 

dz = i݁௜ఏ݀ߠ , cos θ = ௘
೔ഇା	௘ష೔ഇ

ଶ
 , sin θ = ௘

೔ഇି	௘ష೔ഇ

ଶ
.  

Since dz = i݁௜ఏ݀ߠ = iz	݀ߠ and ିݖଵ = ଵ
௭
 = ݁ି௜ఏ , these three quantities are equivalent to 

dθ = dz 
iz

, cos θ = 
1   

2
z z  , sin θ =

1   
2

z z . Thus, we get 

 
0

1 12     
2 2C

z z z z dzF cos ,sin d F ,
iz



  
   

  
 

  , where C is the unit circle │ݖ│ ൌ 1. 

4.2.1 Example: Evaluate 2 20

a d
a sin




 , where a൐0. 

Solution: Let I= 2 20

a d
a sin




 = 2 20

2
2 2

a d
a sin




 = 20

2
2 1 2

a d
a cos




   

=  
2

20
2

2 1
a dt , t

a cost


 
   

=  
2

0 22 1
2

it it

a  dt
e e

a




 

         

Putting itz e , such that itdz e tid , we get 

  I =
 2 1

2
2 2 1C

a dz 
iz( a ) z z   = 2 2

12
2 2 1 1C

ai dz
z ( a ) z   .  

or   I = 2
C

ai f ( z )dz , where C is unit circle│z│=1. 
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and  f(z)= 2 2
1

2 2 1 1z ( a )z  
 

Now the poles are given by 2 22 2 1 1 0z ( a )z     

i.e. z   = 2 22 1 2 1( a ) a ( a )    

 we take α = 2 22 1 2 1( a ) a ( a )    

2 = ߚ   22 1 2 1( a ) a ( a )    

Thus, the poles are z ,   

Clearly, 1  and since 1  ⇒ 1  . Thus, f(z) has only one simple pole z = that lies within C. 

    
2

1 1
4 1z

Res f z , Res z lim( z ) f ( z )
a (a )

  
 


     

 
 

Hence, by Cauchy’s Residue Theorem 

2
C

f (z)dz i [Sum of residues off(z) at its poles within C] 

     =
2 2

12
4 1 1

i
a (a a) ( )

    
  

.  

4.2.2 Example: Prove that 
2

2 20

2 ,
cos

d
a b a b

  



 
  a>b>0. 

Solution: Let I=
2 2

0 0

2
cos 2 (e )i i

d d
a b a b e

 

 

 
 

     

i iPut z e dz ie d     . 

Therefore, I = 2 (z)dz
C

f
ib  , where f(z)=

2
  1 ,   2 .

1
1where C is unit circle z

az z
b

 
││  

Poles of f(z) are given by z = 
2 2a a b

b
   
 and z=

2 2a a b
b

   
  

Since 1 1 1 [ a b 0]and         

So, z=  is the only pole lying within C. 

  Res(z = α) = 
2

1lim(z ) f(z) lim(z ) 2 1
z z azz

b
 

 
 

  
 

 

          =
2 2

1lim
( )( ) 2z

z b
z z a b


   


 

   
 

Hence, by Cauchy residue theorem, 
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2 2 2 2

(z)dz 2
2C

b ibf i
a b a b

 
 

  

Therefore, from (1), we get 

 I = 
2 2 2 2

2 2i b
ib a b a b

 


 
 

4.2.3 Example: Prove that  
2

0

cos 2
5 4cos

d
  

 = 
6
  . 

Solution: Let I = 
2

0

cos 2
5 4cos

d
  

  

     = real part of  
22

0

.
5 2

i

i i

e d
e e



 


   

     = real part of  
2

1
,

5 2
i

C

z dz z e
izz z





   

    = real part of 1 ( )
C

f z dz
i  , 

where f(z) = 
2 2

22 5 2 (z 2)(2z 1)
z z

z z


   
, where C is unit circle│z│=1. 

Poles of f(z) are given by z = -2, 1
2
  . So z = 1

2
  lies within C. 

Res
 

2

1
2

1 1lim
2 2 2 1 ( 2)z

zz z
z z



             
 

    = 
2

1
2

1
1 14lim ( ) 1 2.32 122( )( 2)

2 2
z

zz
z z




  
 

 

So, using Cauchy residue theorem, we have 

  I = real part of1 1.2 .
12 6

i
i

   

4.2.4 Example: Prove that 
 2

2 20

2 1cos .
1 2 cos 1

n nan d
a a a

  





   where 2 1a   and n is a positive 

integer. 

Solution: Let I = 
2

20

cos
1 2 cos

n
a a

 
  dθ 

  = real part of
2

20

.
1 2 cos

ine d
a a

 
   
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  = real part of
2

1 20
.

1 ( )

nz dz
a z z a iz



    

  = real part of
 

1
1( )

n

C

z dz
ai z a z

a
 

  

  = real part of 1 ( )
C

f z dz
ai  ,where f (z) = 1( )( )

nz

z a z
a

 
 , C is unit circle 1z  . 

Poles of f(z) are given by z = a, z= 1
a
 . 

So z = a is a simple pole lying within C, 2 11 1 1a implies a and
a

    
 
 . 

1

2
( 1)Res(z a) lim ( ) 1 1( )( )

n n n

z a

z az a
az a z

a






     

 
 

So, by Cauchy residue Theorem 

  
1

2
2 ( 1)( )

1

n n

C

i af z dz
a

 


  

So, I = real part of
1

2 2
1 2 ( 1) ( 1) 2.

1 1

n n n ni a a
ai a a

  


 
 

4.2.5 Example:Prove that
2 cos

0

2cos(sin n )d
!

e
n

       ,where n is a +ve integer. 

Solution: Let I = 
2 cos

0
cos(sin n )de

      

  

2 cos (sin n )i

0
2 cos sin

0
2

0

2

0

1

  

  

 . 

 

.  

, .

1

i

i in

e in

z n i

z

nC

real part of

real part of

real part

e e d

e d

e e d

dze z z e
i

of

real part of

real par

z
eof dz

i z
t



   

   

 

 









 













 











 

1 (z)  dz
C

real part o f
i

f  , where 1(z)
z

n

ef
z  ,C is unit circle │z│=1. 

Clearly, z = 0 is a simple pole of order n+1 forf(z), lying within C. 



Complex Analysis 123 

 

 

Res(z = 0) = 1
10

1 1lim
! !

n z
n

n nz

d ez
n dz z n




 
 

 
 

So, by Cauchy Residue Theorem, we have 

I = real part of
1
i

22
! !

ii
n n

   . 

4.2.6 Example: Show that, 0
tan( ia)d i


     where a is positive real number. 

Solution: Let I = 0 0

sin( ia)tan( ia)d
cos( ia)

d
    




 
 

 

  

0

0

2

0

2

0

2sin( ia).cos( ia)
2cos( ia).cos( ia)
sin 2 sin 2
cos 2 cos 2
sin sin 2 .
cos cos 2 2

1 sin sinh 2
2 cos cosh 2

d

ia d
ia

t ia dt
t ia

t i a dt
t a









  
 
 


 


 





















 Put 2θ =t, dθ =dt/2 

  
2

0

2
21

2 2
2

it it

it it

e e i sinh a
i

dt
e e cosh a







 
 

 
   
 

  

  
2

0

1 2 2
2 2 2

it it

it it

e e sinh a .dt
i e e cosh a

 



 


   

 
 

1

1

2 21
2 2 2

it

C

z z sinh a dz. ,z e
i izz z cosh a





 
 

   

  = 
2

2

1 2 2 1
2 2 2 1C

z z sinh a .dz
( z z cosh a ) z

  
   

  1
2 C

f (z)dz
  , where  

2

2

2 2 1
2 2 1

z z sinh af (z)
z z z cosh a

 


 
 , C is unit circle 1z  . 

Now, poles of f (z)  are given by  2 2 2 1 0z z z cosh a   . 

0 2 2z and z cosh a sinh a      

Let 2 2 2 2cosh a sinh a , cosh a sinh a        

So, f(z) has two simple pole z=0 and z   lying within C( 1  ). 
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 

 

0
2

20

0 0

2 2 1 1
2 2 1

z

z

Re s(z ) lim z f (z)

z z sinh alim z.
z z z cosh a





  

 
  

 

 

and   
z

Re s(z ) lim(z ) f(z)


 


    

       
2 2 2 1

z

z z sinh alim z
z z .z


 

 
 

 
 

 
 

2
12 22 2 1 sinh asinh a   

    

  
 

 
 

     2 2 2 2 2 2 0
2 2

sinh a sinh a sinh a
sinh a

 
 

  
  


 

So, by Cauchy residue theorem,   1 2 1 0
2

I i i 
    . 

4.2.7 Example: Evaluate 
4

0

sin
cos

d
a b

  
  where a>b>0. 

Solution: We note that 4sin   is an even function of θ and sinθ and cosθ are periodic functions of the 

period 2π. Hence, the given integral can be written as I = 
42

0

1 sin
2 cos

d
a b

  
  

Therefore, 

41

1

21 . , ,
2

2

i

C

z z
i dzI z e

izz za b







 
 
  

 
  

 

  

  =
 42

4 2

11 .
216 1

C

z
dz

azib z z
b



   
 

  

  = 1 (z)dz
16 C

f
ib  ,where f(z)= 

2 4

4 2

(z 1)
2 1azz z
b


   
 

and C being a unit circle. 

Now, the poles of f(z) are z = 0 of order 4 and z =α,β, where
2 2 2 2a a b a a band

b b
      
  . 

Now 1, 1 { a b 0}      
Thus, the only poles inside C are z =0 and z = α. 

Res(z = α) =
42 4 2 4 4 1

4 4 4

(z )(z 1) ( 1) ( )lim
(z )(z ) ( ) ( )z z

    
       





   
 

   
 

   =

3
2 2 2

3
3

8(a b )( )
b

  
  . 
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For finding the residue at z = 0 we have to obtain the coefficient of 1
z

 in the power series expansion of 

2 4

4 2

(z 1)
2 1azz z
b


   
 

=
1

2 4 2
4

1 2(1 z ) 1 az z
z b


        

 

      =
2 2 3 3 3

2 4 6 8 2 4
4 2 3

1 2 4 4 81 4 6 4 1 ...az a z az a zz z z z z z
z b b b b

 
             

 
 

Coefficient of 1
z

 = Coefficient of 3z  

  =
3

3
4 8 8a a a
b b b
   =

3

3
12 8a a

b b
  

So, by Cauchy residue theorem, we have 

  I = 

3
2 2 2 32

3 3
2 8(a b ) 12 8
16

i ab a
ib b b


 
   

  

 =
3

2 2 3 22
4

3(a b )
2

a ab
b
  

   
 

. 

4.2.8 Exercise: 

(i) Prove that 2 20 2 1
a d

a cos (a )

 



 

  

(ii) Prove that  2 cos

0

2 1
cos(sin n ) d

!

n

e
n

  
   
   , where n is a +ve integer. 

(iii) Prove that
2

2
0

1
(2 cos )

d



  = 4

3 3
  

4.2.9 Theorem: Let f(z) be a function of the complex variable z satisfying the conditions 
(i) f(z) is meromorphic in the upper half of the complex plane i.e. Im(z)൒0. 
(ii) ( )f z  has no pole on the real axis. 

(iii) ( ) 0 arg .zf z uniformely as z for o z      

(iv) 
0

( ) ( )f x dxand f x dx
 

   both converge. 

Then, ( ) 2 Ref x dx i s



   where Re .s  denotes the sum of residues of f(z) at its poles in the upper 

half of the z-plane. 

Proof: Let us consider the integral ( )
C

f z dz  , where C is the contour consisting of the segment of the 
real axis from –R to R and the semi-circle in the upper half plane on it as diameter. 
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Let the semi-circular part of the contour C be denoted by T and let R be chosen so large that C includes 
all the poles of f(z). 
Then by Cauchy’s residue theorem, 

( ) ( ) ( ) 2 .
R

C R T
f z dz f x dx f z dz i res


           (1) 

By hypothesis (iii), ( )zf z   for all points z on T. If R is chosen sufficiently large, however small be 
the positive number  , then for such R, 

0
(z)dz (Re ) Rei i

T
f f id

      

0
(z) dzf


  <

0
d


   . 

It follows that as , ( ) 0
T

z R f z dz   . 

Now, since hypothesis (iv) holds 

 ( ) lim ( )
R

RR
f x dx f x dx



 
    

Taking limit as R  in (1), we get  

 ( ) 2 Re .f x dx i s



   

4.2.10 Example: By method of contour integration, prove that  

 2 20
4

1
dx /

( x )





  

Solution: Consider the integral  

 
C

f ( z )dz,  where 2 2

1
1

f ( z )
( z )




 

C being the closed contour consisting of T, the upper half of the large circle z  =R and the real axis 
from –R to R. Poles of f ( z )  are z i   (each of order two) f ( z )  has only one pole of order two at z = i 
within C. We can write  

2
( z )f ( z ) ,

( z i )





 where 2
1( z )

( z i )
 


 

 1 1
1 4

Re s(z i) '(i)
! i
    
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Hence, by Cauchy’s residue theorem 

 12
4 2C

f ( z )dz i
i

   

`or 
2

R

T R
f ( z )dz f (x)dx 


    

i.e. 2 2 2 21 1 2
R

T R

dz dx
( z ) ( x )




 
    

Now, using the inequality, 

 1 2 1 2
1 2 1 2

1 1z z z z , ,
z z z z

   
 

 we get 

 22 2 2 2 21 1 1T T T

dz dzdz
( z ) ( z ) ( z )

 
      

   2 2 2 2
1 0

1 1T

Rdz
( R ) ( R )


  

   as z R   

So  2 2 0
1TR

dzlim
( z )


  

Making R  in (1), we obtain 

 2 2 2
1

dx /
( x )







   or  2 20
4

1
dx /

( x )





  

4.2.11 Example: Prove that 
2

4 2
2 5.

10 9 12
x x dx

x x




 


   

Solution: Consider the integral ( )
C

f z dz where 
2

4 2
2( ) ,

10 9
z zf z

z z
 


 

 C be the closed contour consisting 

of T, the upper half of the large circle z R  and the real axis from –R to R. 

We know that  1 2 1 2z z z z    

1 2 1 2

1 1
z z z z

 
 

 

Under this inequality, we have 
2

4 2
2( ) .

10 9T T

z zf z dz dz
z z

 


    

   
2 2

4 2 4 20

2 2. . .
10 910 9T

z z R Rdz R d
R Rz z




   
 

     

   
2

4 2
2 . 0

10 9
R R R as R

R R
 

  
 

. 

Therefore, ( ) 0
T

f z dz as R  . 
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Now, pole of f(z) are given by 4 2 2 210 9 0 ( 1)( 9) 0 , 3z z z z z i z i            . 
Out of these pole only two simple pole z = i and z= 3i lies within c. 

Therefore, the sum of residues, Res(z=i)+Res(z=3i)= 5
24i

. 

So, by Cauchy residue theorem, we get  

  5 5( ) ( ) ( ) 2
24 12

R

C T R
f z dz f z dz f x dx i

i




     
    . 

Making R    and using (1), we get 

  
2

4 2
2 5.

10 9 12
x x dx

x x




 


   

4.2.12 Example: Prove that 2 2 2 2 2 3 2

2 0 0
2

dx ( a b ) , a , b
( x a )( x b ) ab ( a b )






  

    

Solution: Consider the integral 
C

f ( z )dz,  

where 2 2 2 2 2
1f ( z )

( z a )( z b )


 
 

and C is the closed contour consisting of T, the upper half of the large circle z R and the real axis 
from –R to R. Poles of f ( z )  are z ia   (simple) and z ib   (double). Only poles of f ( z )  lying 
within C arez=ia (simple) and z=ib (double) 

2 2 2
1

2
Re s(z ia)

ia(a b )
 


  

 
2 2

23 2 2

3
4
( b a )iRe s(z ib)
b a b


 


 

Thus, sum of residues
2 2

2 2 2 3

2 3
4

i b a
a(a b ) b

  
    

 

  
3 2 2

3 2 2 2

2 3
4

i b a( b a )

ab (a b )

    


 

3 3 2

3 2 2 2

3
4

i (b a ) b (b a)
aba (a b )

    


 

3 3 2

3 2 2 2

2 2 2

3 2 2 2

3
4

3
4

i (b a ) b (b a)
ab (a b )

i(b a) b a ab b
ab (a b )

    


     


 

3 2 2 2 3 2
2 2

4 4
i(b a )(a b)(a b) i(a b)

ab (a b ) ab (a b)
    

 
 

 



Complex Analysis 129 

 

 

So, by Cauchy residue theorem, 

  
R

C T R

f (z)dz f (z) f (x)dx


     

   3 2 3 2
2 22

4 2
i(a b) (a b)i

ab (a b) ab (a b)


   
    

 

Now,   2 2 2 2 2
T T

dzf (z)dz
(z a )(z b )


    

   2 22 2 2
T

dz
( z a )( z b )


   

2 2 2 2 0R as z R
(R a )(R b )


   

 
 

Making R    in (1), we obtain 

  2 2 2 2 2 3 2
2

2
dx (a b)

(x z )(x b ) ab (a b)







    

4.2.13 Deductions: 

  2 2 2

5
1441 4

dxi
(x )(x )






   

  2 2 2 92 1
dxii

(x )(x )





   

  2 2 2

7
12009 4

dxiii
(x )(x )






   

4.2.14 Jordan Inequality: If 0 ൑ ߠ ൑ గ

ଶ
, thenଶఏ

గ
൑ ߠ݊݅ݏ ൑  .This inquality is called Jordan inequality .ߠ

We know that as θ increases from 0 to గ
ଶ
, cosθ decreases steadily and consequently the mean ordinate of 

the graph of y = cosx over the range 0൑ ݔ ൑   also decreases steadily and mean ordinate is given by ߠ

  1 sincos
o

xdx
 

 
  

It follows that when  0 ൑ ߠ ൑ గ

ଶ
 , we get 2 sin 1

 
    or 2 sin  


   . 

4.2.15 Jordan Lemma: If f(z) is analytic except at a finite number of singularities and 
if (z) 0f  uniformly as z   , then 

lim (z)dz 0,imz

TR
e f


 0m  . 
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Where T denotes the semicircle z R  and Im(z) 0 , R being taken so large that all the singularities of 
f(z) lie within T. 
Proof: Since (z) 0f  uniformly as z  there exist 0  such that (z)f z  on T. 

Also,  Reiz R z     

Reidz id and dz Rd     

Re cos sin sin.
iimz im imR mR mRe e e e e
        

Hence, using Jordan inequality, we get 

(z)dz (z)imz imz

T T
e f e f dz   

   sin

0

mRe Rd
     

   =
sin

2
0

2
mR

R e d





  ቐ

ଶఏ

గ
൑ ߠ݊݅ݏ ൑ ߠ

ିଶఏ

గ
൒ െߠ݊݅ݏ

 

    
2

2
0

2
mR

R e d


 





    

    =

22

2 2

mR

eR mR








 
 

   
 

 = 02
2

mRR e e
mR
         

 

    =    1 1mR mRe e
m m m
      

    . 

So, lim (z)dz 0imz

TR
e f


 . 

4.2.16 Integrals of the form ( )cosf x x dx



  and ( )sinf x x dx




 : In view of Euler’s formula, 

cos sini xe x i x    , where is a positive real number, we can write 

( ) ( )cos ( )sini xf x e dx f x x dx i f x x dx  
  

  

    ,  

whenever both integrals on the right hand side converge. 
4.2.17 Example: By the method of contour integration, prove that 

  2 20

cos
2

mamx dx e
x a a

 
  , where m൒	0, a൒	0. 
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Solution: Consider the integral (z)dz
C

f  , where 2 2(z)
imzef

z a



 and C being a closed contour 

consisting of T, the upper half of the large circle z R  and the real axis from –R to R. 

Now, 2 2
1 0

z a



 as z R   . 

Hence, by Jordan Lemma 

  2 2lim 0
imz

TR

e dz
z a


  

or lim (z)dz 0
TR

f


 , where 2 2(z)
imzef

z a



 .     (1) 

Now poles of f(z) are given by 2 2 0z a   i.e. z=േia. But z=ia is the only simple pole lying inside C. 

 Res(z=ia) = (z ia)elim
(z ia)(z ia)

imz

z ia


 

 

       = lim
2

imz ma

z ia

e e
z ia ia







. 

Hence, by Cauchy residue theorem 

(z)dz (z)d (x)dx
R

C T R
f f z f


     

But (z)dz 2
2

ma
ma

C

ef i e
ia a




   

(z)dz (x)dx
R ma

T R
f f e

a
 


    

Making R   and using (1), we obtain 

  2 2

imx
mae dx e

x a a
 




  

Equating the real parts on both sides, we have 

 2 2
cos mamxdx e
x a a

 




  or 2 20

cos
2

mamx dx e
x a a

 
  

4.2.18 Deductions: 

20

cos( )
21

aaxi dx e
x

 
  

1
20

cos( )
2 21

xii dx e
ex

   
  

  2 20

cos
4 4
xiii dx

x e



  
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4.2.19 Example: Prove that 2 20

sin , 0
2

ax x e a
x a

  
  

Solution: Consider the integral ( )
C

f z dz   where 2 2( )
izzef z

z a



  and C being a closed contour 

consisting of T, the upper half of the large circle z R  and the real axis from –R to R. 

Now 2 2 0z
z a




 as z R  . Therefore, Res ( )z ia  =
2

ae . 

Hence, by Jordan’s lemma 

lim ( ) 0
TR

f z dz


  

Now, by Cauchy residue theorem 

2( ) ( ) ( )
2

aR

C T R

ief z dz f z dz f x dx  


      

Making R   and using (1), we obtain 

2 2 .
ix

axe dx ie
x a


 




  

  2 20
.

2

ix axe iedx
x a

 


  

Equating imaginary parts, we obtain 

2 20

sin .
2

ax x dx e
x a

 
  

Similarly, 3
2

0

sin
29

x x dx e
x




  

4.2.20 Example: Prove that 
3

2
4 40

sin . cos , 0, 0
2 2

max mx madx e a m
x a

 


  
  

Solution: Consider the integral ( )
C

f z dz  where 
3

4 4( )
imzz ef z

z a



 and C is the closed contour consisting 

of the upper half of the large circle and real axis from –R to R. 

Since 
3

4 4 0z
z a




 as z R  .So by Jordan lemma, we get 

3

4 4lim 0
imz

TR

z e dz
z a


  

i.e. lim ( ) 0
TR

f z dz


  

Now poles of f(z) are given by 4 4 0z a  i.e 4 4z a   
4 2 4.n i iz e e a    = (2n 1) i 4e a  
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(2n 1) i
4

a
z e



   , where n =0,1,2,3… 

Out of these four poles only 4
i

z ae


  and
3
4

i

z ae


  lie inside C. 

If (z)(z)
(z)

f 


 thenRes(z=α)= (z)lim ,
'(z)z 

 


 being simple poles. 

For the present case, we have 

  Res(z=α) =
3

3lim lim
4 4

imz imz

z z

z e e
z  

  

Therefore, sum of residues i.e. Res( 4
i

z ae


 ) + Res(
3
4
i

z ae


 ) 

=
3

4 41 exp exp
4

i i

imae imae
     

    
     

 

= 1 1 1exp exp
4 2 2

i iima ima
                

       
 

= 1 exp exp exp
4 2 2 2

ma ima ima               
       

 

= 1 exp cos
2 2 2

ma ma 
 
 

. 

Hence, by Cauchy residue theorem, we get 

  (z)dz exp cos
2 2C

ma maf i    
   

Taking limit z R   and using (1), we get 

  (x)dx exp cos
2 2

ma maf i




   
    

     

3

4 4 dx exp cos
2 2

imxx e ma mai
x a






   
           

Equating imaginary parts, we obtain 
3

4 4

3

4 40

sin exp cos
2 2

sin exp cos
2 2 2

x mx ma madx
x a

x mx ma maor dx
x a











   
        

   
        




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4.3 Conformal Mappings: 
4.3.1 Definition: A mapping from z-plane to w-plane is called isogonal if it has a one-one 
transformation which maps any two intersecting curves of z-plane into two curves of w-plane which cut 
at the same angle. Thus, in an isogonal mapping, only the magnitude of angle is preserved. 

4.3.2 Definition: Let ( )w f z  be a one to one mapping from the z-plane into w-plane. Let 1C  and 2C  
be two continuous arcs in z-plane through the point 0 0 0( , )z x y  which are mapped respectively into 
curves 1 'C and 2 'C intersecting at the point 0 0( )w f z . Then, if the angle at the point 0z  between the 
arcs 1C  and 2C  is equal to the angle at the point 0w   between 1 'C  and 2 'C  both in the magnitude and 
sense of rotation, then the mapping is called conformal mapping at point 0z . 

4.3.3 Remarks: Some authors do not distinguish between isogonal and conformal mappings. They 
regard conformality as the preservation of the magnitude of angle without considering the sense of 
rotation. 

The following theorem provides the necessary and sufficient condition for conformality which 
briefly states that if ( )f z  is analytic, mapping is conformal. 

4.3.4 Theorem: Prove that at each point z of a domain where ( )f z  is analytic and 0'( )f z  is not zero, 

0z being an interior point, the mapping ( )w f z is conformal. 

Proof: Let  be an analytic function of , regular and one valued in a domain D of the z -plane. 
Let 0z be an interior point of D. Let 1C  and 2C   be continuous curves passing through the point 0z and 
having definite tangents at this point making angles 1  and 2 , say, with real axis. 

 
We have to discover that what is the representation of this figure in the w-plane. Let 1z  and 2z  be two 
points on the curves 1C  and 2C  respectively, where 1z  and 2z are taken very close to 0z . We shall 
suppose that they are at the same distance r from 0z  so that we can write  

1 0z z r   and 2 0z z r   
i.e. 1

1 0
iz z re    and 2

2 0
iz z re   . 

Then, as 0r   , 1 1   and 2 2  . 

 

( )w f z z
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The point 0z corresponds to a point 0w   in the w-plane and the points 1z  and 2z corresponds to points 

1w and 2w  which describe curves 1 'C   and 2 'C making angles 1 and 2  with the real axis as shown in 
the figure. Let     

 

when  and , then   and  respectively. 

Now, by definition of analytic function, as ( )f z is given to be analytic, we have  

0 1 0

1

11 0

0 1 0
0 z z0 1 0

1
z

( ) ( )'( ) lim lim

lim

z z

i
i

iz

f z f z w wf z
z z z z

e R e
r e







 



 
 

 

 
 

 i.e.,  1 1

1 0

( )1lim Rei i

z z
e

r
   


  

Equating the argument and modulus, we have 

1 0

1
0lim '( )

z z
R f z

r



   and  

 

Similarly, we have 2 2     . 

Hence, the curves 1 'C and 2 'C  have definite tangents at point 0w  making angle 1   and 2  with 
the real axis. Thus, the angle between 1 'C and 2 'C is 

1 2 1 2 1 2( ) ( )               . 

Which is the same as the angle between 1C  and 2C .Hence, the curves 1 'C and 2 'C intersect at the same 
angle as the curves 1C and 2C .Also, the angle between two curves has the same sense in the two figures 

and therefore the mapping is the conformal mapping. 
4.3.5 Special Case: In the above theorem, when '( ) 0f z  . 

Proof: Suppose '(z)f  has a zero of order n at the point 0z , so that 

0'( ) ( ) ( )nf z z z z   ,  

where (z)  is analytic and 0( ) 0z   

 
1

0 0 0 0 0'( ) ''( ) '''( ) ... ( ), ( ) 0n nf z f z f z f z f z      .  (1) 

Expanding ( )f z  by Taylor’s theorem in the neighborhood of 0z  , we have 

1

2

1 0 1

2 0 2

i

i

w w e

w w e









 

 

1 2 0  1 1  2 2 

1 0
1 1

1 1 1 1

lim ( )

i.e,
z z

  

     


 

    



136 Section–IV 

0
0

( ) ( )m
m

m
f z a z z





         ,                                                          (2) 

where          0( )
!

m

m
f za

m
          (3) 

Applying (1) to (3), we have 0ma    for 1, 2, 3,...,m n  . 

Thus, from (2), we have 

  0
0 0 0

1
( ) ( ) ( )m

m
m n

f z a z z a z z


 

     . 

 But  
(0)

0
0 0

( ) ( )
0!

f za f z   

 
1

0 1 1 0
1

1 0 1 1 0

( ) ( ) ( ) ...

w ( )

n
n

n
n

f z f z a z z

w a z z







    

   
 

Taking, 1 1
1 0 1 1 0,i iw w e z z re      and 1

i
na a e 
  . 

Therefore, we get 
1 1

1

(n 1)1
1

[( 1) ]1

i ii n

i nn

e a e r e

a r e

 

 

 

 




 

 1 1 1lim lim (n 1) (n 1)            

Similarly, 2 2lim (n 1)      

 2 1 2 1lim( ) ( 1)( )n         

The curves 1 'C  and 2 'C have definite tangents at  0w   but the angle between them is 1n  times the 
angle between 1C and 2C passing through 0z . Consequently, conformal property does not hold at 0z . 

4.3.6 Definition: If a complex function ( )f z  is analytic at a point 0z  and if 0'( ) 0f z  , then 0z is called 
a critical point of ( )f z . 

The following theorem is the converse of the above theorem and a sufficient condition for 
conformal mapping. 
4.3.7 Theorem: If the mapping ( )w f z  is conformal and there exist a pair of continuously 
differentiable relations ( , ), ( , )u u x y v v x y   then show that ( )f z  is an analytic function of z .  

Proof: Let ( , ), ( , )u u x y v v x y  be a pair of differentiable equation defining conformal transformation 
from xy-plane to uv-plane. Let ds  and d  be the length elements in the xy-plane and uv-plane 
respectively, then by definition 
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2 2 2

2 2 2
(1)

ds dx dy
d du dv

  


  
  

Since u and v are functions of x and y, therefore 
u udu dx dy
x y
 

 
 

and v vdv dx dy
x y
 

 
 

2 2
2 2

2 22 2
2 2 2. ., ( ) ( ) 2 (2)

u u v vdu dv dx dy dx dy
x y x y

u v u v u u v vi e d dx dy dx dy
x x y y x y x y



      
              

                                                        

 

Since the mapping is conformal, therefore the ratio 2 2:d ds  is independent of the direction. Comparing 
the coefficient from equation (1) and (2), we have 

2 22 2

1 0 1

u vu u v vu v
y yx y x yx x

                                   
2 22 2u v u v

x x y y
                            

      (3) 

and   0u u v v
x y x y
   

 
   

         (4) 

From equation (4), we have  
/ / (say)
/ /

u x v x
v y i u y

   
 

   
 

,u v v u
x y x y

    
   

   
             (5) 

Putting this in equation (3), we get 
2 2 2 2

2 2v u u v
y y y y

 
          

                   
 

or          
2 2

2( 1) 0u v
y y


     

            
 

2 1 0 1        
Using this in equation (5), we get 

,u v u v
x y y x
   

  
   

     (when λ=1)      (6) 

  ,u v u v
x y y x
   

  
   

   (when λ= 1)    (7) 
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The equation (6) is Cauchy- Riemann equation and hence ( )w f z  is an analytic function. The equation 
(7) are reduced to (6) by writing –v in place of v i.e., by taking as image figure obtained by the reflection 
in the real axis of the w-plane. Thus, the four partial derivatives ux, uy, vx, vy exist are continuous and 
satisfy C-R equations. Hence, ( )f z is analytic. 
4.3.8 Remarks: 
(i) The mapping ( )w f z   is conformal in a domain D if it is conformal at each point of the domain. 
(ii) The conformal mappings play an important role in the study of various physical phenomena defined 

on domains and curves of arbitrary shapes. Smaller portions of these domains and curves are 
conformally mapped by analytic function to well-known domains and curves. 

4.3.9 Example: Find all points where the mapping ( ) sinf z z  is conformal. 
Solution: The function ( ) sinf z z is entire and '( ) cos 0f z z   if and only if 

(2 1) , 0, 1, 2....
2

z n n
    

 
and so each of these points is a critical point of f . By theorem 4.3.4, 

sin z  is a conformal mapping for all (2 1) , 0, 1, 2....
2

z n n
     . Furthermore, sinw z  is not a 

conformal mapping at (2 1) , 0, 1, 2....
2

z n n
     because ''( ) sin 1f z z     atthe critical points 

of f . 
4.3.10 Example: Discuss the mapping w z . 
Solution: We observe that the given mapping replaces every point by its reflection in the real axis. 
Hence, angles are conserved but their signs are changed and thus the mapping is isogonal but not 
conformal. If the mapping w z is followed by a conformal transformation, then resulting 
transformation of the form ( )w f z is also isogonal but not conformal, where ( )f z  is analytic function 
of z . 

4.3.11 Example: Discuss the mapping aw z , where a is a positive real number. 
Solution: Denoting z and w in polar as  

,i iz re w e    , the mapping gives ar  , a   . 
Thus the radii vectors are raised to the power a and the angles with vertices at the origin are multiplied 
by the factor a. If 1a  , distinct lines through the origin in the z-plane are not mapped onto distinct lines 

through the origin in the w-plane, since, e.g. the straight line through the origin at an angle 2
a
  to the 

real axis of the z-plane is mapped onto a line through the origin in the  w-plane at an angle 2  to the 

real axis i.e. the positive real axis itself.  Further 1adw az
dz

 , which vanishes at the origin if a > 1 and 

has a singularity at the origin if a < 1. Hence the mapping is conformal and the angles are therefore 
preserved, excepting at the origin.  

Similarly, the mapping  zw e  is conformal. 
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4.3.12 Example: Prove that the quadrant 1z  , 0 arg
2

z 
  is mapped conformally onto a domain in 

the w-plane by the transformation 2( 1)
4

z
w


 . 

Solution: If 2( 1)
4( )

z
w f z


  , then '( )f z  is finite and does not vanish in the given quadrant. Hence, 

the mapping ( )w f z  is conformal and the quadrant is mapped onto a domain in the w-plane provided 
w does not assume any value twice i.e. distinct points of the quadrant are mapped to distinct points of 

the w-plane. We show that this indeed is true. If possible, let 2 2
1 2

4 4
( 1) ( 1)z z


 

, where 1 2z z  and 

both 1z  and 2z  belong to the quadrant in the z-plane. Then, since 1 2z z , we have 

1 2 1 2( )( 2) 0z z z z    . 

1 2( 2) 0z z    i.e. 1 2 2z z   . But since 2z  belongs to the quadrant, 2 2z  does not, which 
contradicts the assumption that 1z belongs to the quadrant. Hence, w does not assume any value twice. 

4.3.13 Exercise: Determine where the complex mapping ( )w f z   is conformal. 

1. 
3( ) 3 1f z z z    

2. 
2( ) 2 3f z z iz    

3. ( ) 1zf z z e i     

4. 
2 2( ) zf z ze   

5. ( ) tanf z z  

6. ( ) ln ( )f z z z i    
4.3.14 Exercise: Show that the complex mapping ( )w f z is not conformal at the indicated point. 

1. 3
0( ) ( ) ;f z z i z i    

2. 2
0( ) ( 3) ; 3f z iz z i     

3. 
2

0( ) ; 0zf z e z   

4. 0( ) ; 0f z z z   

4.4 Space of Analytic Function: 
4.4.1 Definition: A metric space is a pair (X, d) where X is a set and d is a function from   X X  into R, 
called the distance function or metric, which satisfy the following conditions for x, y, z X  

(i)   ,   0d x y   

(ii)  ,    0   d x y if x y   
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(iii)    ,    ,d x y d y x  

(iv)      ,    ,     ,d x z d x y d y z   

Conditions (iii) and (iv) are called ‘symmetry’ and ‘triangle inequality’ respectively. A metric space (X, 
d) is said to be bounded if there exists a positive number K such that  ,   d x y K  for all ,  .x y X The 
metric space (X, d), in short, is also denoted by X, the metric being understood.  If x and r> 0 are fixed 
then let us define 

  
   
   

; { : , }

; { : , }

B x r x X d x y r

B x r y X d x y r

  

  
 

B(x; r) and  ;B x r  are called open and closed balls (spheres) respectively, with centrex and radius r. 

 ;B x   is also referred to as the  -neighbourhood ofx. 

Let X = R or ԧ and define  ,  d z w z w   . This makes both (R, d) and (ԧ , d) metric  spaces. 
(ԧ , d)is the case of principal interest for us. In (ԧ , d), open and closed balls are termed as open and 
closed discs respectively. A metric space (X, d) is said to be complete if every sequence in X converges 
to a point of X, R and ԧ are examples of complete metric spaces. If G is an open set in ԧ and (X, d) is 
complete metric space then the set of all continuous functions from G to X is denoted by C(G, X). 
The set C(G, X) is always non empty as it contains the constant functions. However it is possible that 
C(G, X) contains only the constant functions. For example, suppose that G is connected and X = N = {1, 
2, 3, 4,..}. If f C(G, X) then f(G) must be connected in X and hence, must be singleton as the only 
connected subsets of N are singleton sets. 

In this section we shall be mainly concern with the case when X is either ԧ or ԧ .To put a 
metric on C(G, X), we need the following results. 
4.4.2 Theorem:  If G is openset in ԧthen there is a sequence { }nK  of compact subsets of G such that 

1
n

n
G K




   . Moreover, the sets { }nK can be chosen to satisfy the following conditions: 

(i) 1intn nK K   

(ii) K G  and K compact implied nK K for some n. 

4.4.3 Definition: If G is open set inԧand
1

n
n

G K



  where each Kn is compact and 1intn nK K  . For 

n N  , we define 
       , sup{ , : }n nf g d f z g z z K   ,for all functions f and g in C(G, X). 

Also, if we define 

    
 1

,1,
2 1 ,

n
n

n n

f g
f g

f g









      
, for all  , ,f g C G X . 

Then,  ,  , )(C G X   is a metric space. In fact  ,  , )(C G X  is a complete metric space. 
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4.4.4 Definition: A set  ,C G X   is normal if each sequence   has a subsequence which 
converges to a function f in  ,C G X . 

4.4.5Lemma:A set   ,C G X   is normal iff its closure is compact. 

4.4.6 Definition:A set  ,C G X  is called equicontinuous at a point z0 in G iff for every 0   
there is 0   such that for 0| | ,z z    

      0,d f z f z  , for every f in  . 

A set   is said to be equicontinuous over a set E G  if for every 0   there is a 0  such that for 
z and 'z  in E and | ' | ,z z   we have 

      , 'd f z f z  , for all f in  . 

Notice that if  is consist of a single function f then the statement that   is equicontinuous at 
z0is only the statement that f is continuous at z0. The important thing about equicontinuous is that the 
same  will work for all the functions in  . Also for { }f  to be equicontinuous over E is equivalent 
to the uniform continuity of f on E.Further, suppose  ,C G X  is equicontinuous at each point of G 
then  is equicontinuous over each compact subset of G. 
4.4.7 Arzela-Ascoli Theorem: A set  ,C G X  is normal iff the following two conditions are 
satisfied: 

(i) For each z in G,  { ; }f z f   has compact closure in X. 

(ii)   is equicontinuous at each point of G. 
Let G be an open subset of complex plane H(G) be the collection of holomorphic (analytic) 

functions on G.The following theorem shows that H(G) is a closed subset of C(G, ԧ). 
4.4.8 Theorem: If { }nf  is a sequence in H(G) and f belongs to C(G, ԧ) such that nf f  then f is 

analytic and    k k
nf f  for each integer 1k  . 

Proof:To show f is analytic on G, we shall use the following form of Morera’s theorem which states, 
“Let G be a region and let :f G  	ԧ be a continuous function such that 0

T
f   for every triangular 

path T in G, then f is analytic in G”. Let T be a triangle contained inside a disk D G . Since T is 
compact, { }nf converges to f uniformly over T. Hence,  

lim 0n
T T

f f   . 

Since each nf is analytic. Thus f must be analytic in every disk D G . This gives that f is analytic in 

G. To show that    k k
nf f , let D denote the closure of B(a, r) contained in G. Then there is a number 

R > r such that  ;B a R G .If  is the circle | |z a R   then by Cauchy’s integral formula, 
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             
  1

!
2

k k n
n k

f w f wkf z f z dw
i w z 


  


, for z in D. 

Let    {| |:| | }n nM Sup f w f w w a R    . Then by Cauchy’s estimate, we have 

         
  1

!| |k k n
n k

k M Rf z f z
R r 

 


, for | |z a r       (1)  

Since nf f , lim Mn = 0.Thus, it follows from (1) that    k k
nf f uniformly on  ;B a R . Now let K 

be an arbitrary compact subset of G and  0 ,r d K G    then there are 1 2, ,... na a a  in K such that  

   
1

;
n

j
j

K B a r


   

Since    k k
nf f uniformly on each  ;jB a r , it follows that    k k

nf f uniformly on K, which 
completes the proof of the theorem. 
4.4.9 Corollary:  H(G) is a complete metric space. 
Proof: Since C(G, ԧ)is a complete metric space and H(G) is closed subset ofC(G, ԧ), we get that H(G) 
is also complete using “Let (X, d) be a complete metric space and Y X . Then (Y, d) is complete iff Y 
is closed in X ”. 

4.4.10 Corollary:  If :nf G  	ԧ is analytic and  
1

n
n

f z



  converges uniformly on compact sets to f(z) 

then      
1

k k
n

n
f z f z




  . 

4.4.11 Hurwitz’s Theorem: Let G be a region and suppose the sequence  nf in H(G) converges  to f.  

If 0f   ,  ;B a R G  and   0f z   for  | |z a R  then there is an integer N such that for ,n N f and 

nf have the same number of zeros in B(a ;R). 

Proof: Let   inf :f z z a R    . Since   0f z  for  | |z a R  , we have  0.   

Now nf f uniformly on {z :  | |z a R  } so there is an integer N such that if   n N and 

 | |z a R  then      | |  
2nf z fz zf 

   

Hence, by Rouche’s theorem, f and nf have the same number of zeros in B(a; R). 

4.4.12 Corollary:  If    nf H G  converges to f in H(G) and each nf  never vanishes on G then 
either 0f   or f never vanishes. 

4.4.13 Remark: Another form of Hurwitz’s theorem is “Let { ( )}nf z be a sequence of functions, each 
analytic in a region D bounded by a simple closed contour and let    nf z f z uniformly in D. 
Suppose that f(z) is not identically zero. Let z0 be an interior point of D. Then z0 is a zero of f(z) if and 
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only if it is a limit point of the set of zeros  of the functions  nf z , points  which are  zeros of  nf z for 
an infinity of values of n being counted as limit points.” 
Proof: Let z0 be any point of D and let  be a circle with centre z0 and radius  so small that   lies 
entirely in D. Suppose  neither contains nor has  on it  any zero of f(z) except possibly for  
thepointz0itself.Then,|f(z)|hasastrictlypositivelowerboundonthecircle 0| |z z   ,say,  

      0 f z K         (1) 

Having fixed  and K, we can choose N so large that, on the circle, 

     nf z f z K    for all n>N       (2) 

From (1) and (2), we get 

      nf z f z f z  

Thus, if we set        ,ng z f z f z   then on the circle    0 ,  z z g z f z   . 

Hence, by Rouche’s theorem, for n > N, g(z) + f(z) i.e. fn(z) has the same number of zeros as f(z) inside 
the circle  . Thus, if f(z) = 0, then fn(z) has exactly one zero inside  for n >  N. Therefore, z0 is the limit 
point of the zeros of fn(z). If  0 0f z  , then  0 0nf z   inside  for n > N which completes the proof. 

4.4.14 Definition : A set  H G   is called locally bounded if for each point a in G there are 
constants M and r > 0 such that for all f in  , 

   f z M  for     .z a r   

Alternately,  is locally bounded if there is an r > 0 such that 

  :   ,sup{ } .f z z a r f     

That is,   is locally bounded if about each point a in G there is a disk on which   is uniformly 
bounded. 
4.4.15 Lemma: A set   in H(G) is locally bounded iff for each compact set K G  there is a constant 
M such that  f z M , for all f in   and z in K. 

4.4.16 Montel’s Theorem: A family   in H(G) is normal iff  is locally bounded. 
Proof: Suppose   is normal. We have to show   is locally bounded. Let, if possible, suppose that   
is not locally bounded. Then there is a compact set K G such that 

  : ,   sup f z z K f    

That is, there is a sequence {fn} in   such that 

  | |sup : .nf z z K n   

Since  is normal there is a function f in H(G) and a subsequence{ }
knf such that 

knf f  
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This gives,     lim sup | |:  0
kn

k
f z f z z K


    

Let  f z M for z in K. Then 

 
     
     

sup{| |: }

{ | | }

 

  sup     :  

  : sup   sup{ | } { | }:

k

k

k

n

n

n

k f zn z K

f z f z zf z

f z

K

f z z K f z z K

 

  

   

 

  
    sup :{| | }

lim
kk n

k
k

fn f

n

z z K Mz

M






  

  

A contradiction since kn  is strictly monotonically increasing sequence. Hence our supposition is 
wrong. So   must be locally bounded. 
Conversely, suppose that   is locally bounded. Then for each z in G,   :f z f  has compact 
closure.  We now show that   is equicontinuous at each point of G. Let a be any fixed point of G and 
> 0. By hypothesis, there is an r > 0 and M > 0 such that   ;  B a r G and  f z M for all z in 

  ;  B a r and for all f in   . 

Let 
2

 1z a r  and f  . Then by Cauchy’s formula, with   itr t a re  , 0 2t   , 

       
   

1| |
2

f w a z
f a f z dw

w a w z


  
 

 

4 | |M a z
r

   

Choose ߜ straight line 0 ,min ,
2 4
r r

M
    

 
. 

Then | |a z    gives     –   f a f z │ │ for all f in  . Therefore F is equicontinuous at  a G . Hence, 
by Ascoli-Arzela theorem,   is normal. 
4.4.17 Corollary: A set   H(G) is compact iff it is closed and locally bounded. 
4.4.18 Definition: A region G1 is called conformally equivalent to G2 if there is an analytic function f : 
G1ԧ  such that f is one-one and f(G1) =G2.  
 It is immediate that ԧ is not equivalent to any bounded region by Liouville’s theorem. Also, it 
follows from the definition that if G1 is simply connected and G1 is equivalent to G2, then G2 must be 
simply connected. 

We now prove Riemann mapping theorem which states that every simply connected region G in 
the plane (other than the plane itself) is conformally equivalent to the open unit disc D. We shall use the 
following results: 
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4.4.19 Result: Let G be an open connected subset ofԧ . Then the following are equivalent. 
(i) G is simply connected. 
(ii) For any f in H(G) such that f(z)  0 for all z  in G, there is  a function g in H(G) such that f(z) 

=[g(z)]2. 
4.4.20 Result: Let f : DD be a one- one analytic function of D onto itself and suppose f(a) = 0. Then 
there is a complex number c with │c│= 1 such that 

 af c where    
1a
z az

az
 




with │a│< 1. 

4.4.21 Open mapping theorem: Let G be a region and suppose that f is a non-constant analytic function 
on G. Then for any open set U in G,f(U) is open. 
4.4.22 Riemann mapping theorem: Let G be a simply connected region which is not the whole plane 
and let a G. Then there is a unique analytic function f:Gԧhaving the properties: 

(i) f(a) = 0 and f(a) >0. 
(ii) f is one-one. 
(iii) f(G) = {z : | z | <1}. 

Proof: First we show f is unique. 
Let g be another analytic function on ԧ such that g (a) = 0, '(a)g > 0, g is one-one and 
   g(G) = {z:| z | <1} = D. 

Then fog-1: D→ D is analytic, one-one and onto. Also,    1 0 0.fog f a    

So there is a constant c with | |  1c  and  1 =fog z cz for all z. 

    [Applying theorem (4.4.20) with a = 0] 
But then   ( ), f z cg z  gives that 0 < '(a)f  = c '(a)g . 

Since '(a)g > 0, it follows that c = 1.Hence f = g and so f is unique. 

Now let      {   , 0, ' 0  ( )0,  }f H G f is one one f a f f G D       

We first show   . Since G ് ԧso there exists b 	ԧsuch that  .b G  

Also G is simply connected so there exists an analytic function g on G such that   2g z z b    . 

Then g is one one. For this let z1,z2 ∈ G such that g(z1) = g(z2) 

Then,     2 2
1 2 g z g z         

  1 2  –  z b z b   1 2 z z  

Thus,g is one-one. 
So by open mapping theorem, there is a positive number r such that  
       ; .B g a r g G          (1) 
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Let z be a point in G such that      ;g z B g a r   

Then,   

  
   
   
    

|
|  

  ;                    

|
|

 

g z g a r

g z g a r

g z B g a r

 

   

  

 

         g z g G     [using (1)] 

So there exist some w G  such that  

      g z g w   

     2 2   g z g w         

  
      z b w b

z w
   
 

  

Thus, we get 

     
 

 
         0

g z g z
g z

 
 

 

But,   2  0z b g z     implies    b z G  , a contradiction. 

Hence,     ;g G B g a r    

Let      ; .U B g a r  There is a Mobius transformation T such that  

                    ( )  T C U D    

Let g1 = Tog then 1g is analytic and  1 .g G D  

Consider    
 

1
2

1
 

1
g z

g z
g z








where	  1  .g a  	

Then g2 is analytic,	  2g G D and  2   0g a  .	

Choose a complex number c,	│c│= 1, such that 

 3 2( ) ( )g z c g z  and '
3( ) 0g a   

Now 3g  hence	   	.	

Next we assume that {0}   	 	 	 	 	 	 	 	 (2)	

Since  f G D ,  sup :{  1| } | f z z G  for f in  . So by Montel’s theorem,   is normal. 

This gives is compact. 
Consider the function    :  H G C   defined as    
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       'f f a   

Hence,  is a continuous function.  

Since is compact, there is an f in  such that    ' 'f a g a , for all  .g  

As   ,(2)implies that  f  . We show that f(G) = D. Suppose  w D such that   .w f G  

Then the function  

    
 1

f z w
w f z




 

is analytic in G and never vanishes. Since G is simply connected, there is an analytic function 
:  h G  	ԧsuch that  

      
 

2

1
 
f w

w f z
h z

z 
 


          (3) 

Since the Mobius transformation  
1

wT
w








   maps D onto D, We have  h G D . 

Define :  g G ԧ as 

    
     

| ' | ( ) ( )( )
' 1

h a h z h ag z
h a h a h z





 

Then    ,   0g G D g a  and g is one- one. 

Also,  
 
 

   
 

 
 

2

2 22

' 1 | || ' | | ' |
'(a) .

' 1 | |1 | |

h a h ah a h a
g

h a h ah a

   
  

 

But,     
 

2|
1
f a w

h
wf a

a w w 



 │ │ │││                     [as f(a) = 0] 

Differentiating (3), we get  
    

  22 ( ) '( ) ' [1 | | ]h a h a f a w   

 
 

  
 

  

 
  

 
    

2 2

2

' 1 | | ' 1 | |
'

2 2 | |

' 1 | | ' 1 | |1' . '
1 | |2 | | 2 | |

f a w f a w
h a

h a w

f a w f a w
g a f a

ww w

 
  

 
  



 

This implies,  g  which is a contradiction to the choice of f. Hence, we must have   .f G D  
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Next we prove {0}   . 

Suppose  nf is a sequence in and  nf f in H(G). 

Then,  ( ) lim  0n
n

f a f a


   

 Also  ' ( ) 'nf a f a so  ' 0f a   

Let z1 be an arbitrary element of G and let  1  w f z . Let  1 n nw f z . Let 2 2 1 ,z G z z and K be a 
close disk centred at 2z such that 1z K .Then  n nf z w never vanishes on K since f is one-one But 

 n nf z w converges uniformly to  f z w on K as K is compact. So, Hurwitz’s theorem gives that 

 f z w never vanishes on K or   .f z w  

If     f z w on K then f is constant function throughout G and since f(a) = 0, we have    0f z  . 

Otherwise, we have f is one-one. So 'f  can never vanish. This gives  ' 0f a   ' 0f a    . So .f   

Hence {0}   , which completes the proof of the theorem. 
 
 


